103 lines
2.9 KiB
TypeScript
103 lines
2.9 KiB
TypeScript
import { Type } from "@sinclair/typebox";
|
|
import { homedir } from "node:os";
|
|
import { join } from "node:path";
|
|
|
|
export type MemoryConfig = {
|
|
embedding: {
|
|
provider: "openai";
|
|
model?: string;
|
|
apiKey: string;
|
|
};
|
|
dbPath?: string;
|
|
autoCapture?: boolean;
|
|
autoRecall?: boolean;
|
|
};
|
|
|
|
export const MEMORY_CATEGORIES = ["preference", "fact", "decision", "entity", "other"] as const;
|
|
export type MemoryCategory = (typeof MEMORY_CATEGORIES)[number];
|
|
|
|
const DEFAULT_MODEL = "text-embedding-3-small";
|
|
const DEFAULT_DB_PATH = join(homedir(), ".clawdbot", "memory", "lancedb");
|
|
|
|
const EMBEDDING_DIMENSIONS: Record<string, number> = {
|
|
"text-embedding-3-small": 1536,
|
|
"text-embedding-3-large": 3072,
|
|
};
|
|
|
|
export function vectorDimsForModel(model: string): number {
|
|
const dims = EMBEDDING_DIMENSIONS[model];
|
|
if (!dims) {
|
|
throw new Error(`Unsupported embedding model: ${model}`);
|
|
}
|
|
return dims;
|
|
}
|
|
|
|
function resolveEnvVars(value: string): string {
|
|
return value.replace(/\$\{([^}]+)\}/g, (_, envVar) => {
|
|
const envValue = process.env[envVar];
|
|
if (!envValue) {
|
|
throw new Error(`Environment variable ${envVar} is not set`);
|
|
}
|
|
return envValue;
|
|
});
|
|
}
|
|
|
|
function resolveEmbeddingModel(embedding: Record<string, unknown>): string {
|
|
const model = typeof embedding.model === "string" ? embedding.model : DEFAULT_MODEL;
|
|
vectorDimsForModel(model);
|
|
return model;
|
|
}
|
|
|
|
export const memoryConfigSchema = {
|
|
parse(value: unknown): MemoryConfig {
|
|
if (!value || typeof value !== "object" || Array.isArray(value)) {
|
|
throw new Error("memory config required");
|
|
}
|
|
const cfg = value as Record<string, unknown>;
|
|
|
|
const embedding = cfg.embedding as Record<string, unknown> | undefined;
|
|
if (!embedding || typeof embedding.apiKey !== "string") {
|
|
throw new Error("embedding.apiKey is required");
|
|
}
|
|
|
|
const model = resolveEmbeddingModel(embedding);
|
|
|
|
return {
|
|
embedding: {
|
|
provider: "openai",
|
|
model,
|
|
apiKey: resolveEnvVars(embedding.apiKey),
|
|
},
|
|
dbPath: typeof cfg.dbPath === "string" ? cfg.dbPath : DEFAULT_DB_PATH,
|
|
autoCapture: cfg.autoCapture !== false,
|
|
autoRecall: cfg.autoRecall !== false,
|
|
};
|
|
},
|
|
uiHints: {
|
|
"embedding.apiKey": {
|
|
label: "OpenAI API Key",
|
|
sensitive: true,
|
|
placeholder: "sk-proj-...",
|
|
help: "API key for OpenAI embeddings (or use ${OPENAI_API_KEY})",
|
|
},
|
|
"embedding.model": {
|
|
label: "Embedding Model",
|
|
placeholder: DEFAULT_MODEL,
|
|
help: "OpenAI embedding model to use",
|
|
},
|
|
dbPath: {
|
|
label: "Database Path",
|
|
placeholder: "~/.clawdbot/memory/lancedb",
|
|
advanced: true,
|
|
},
|
|
autoCapture: {
|
|
label: "Auto-Capture",
|
|
help: "Automatically capture important information from conversations",
|
|
},
|
|
autoRecall: {
|
|
label: "Auto-Recall",
|
|
help: "Automatically inject relevant memories into context",
|
|
},
|
|
},
|
|
};
|