Files
clawdbot/skills/nano-banana-pro/scripts/generate_image.py
2026-01-27 12:21:02 +00:00

185 lines
6.3 KiB
Python
Executable File

#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "google-genai>=1.0.0",
# "pillow>=10.0.0",
# ]
# ///
"""
Generate images using Google's Nano Banana Pro (Gemini 3 Pro Image) API.
Usage:
uv run generate_image.py --prompt "your image description" --filename "output.png" [--resolution 1K|2K|4K] [--api-key KEY]
Multi-image editing (up to 14 images):
uv run generate_image.py --prompt "combine these images" --filename "output.png" -i img1.png -i img2.png -i img3.png
"""
import argparse
import os
import sys
from pathlib import Path
def get_api_key(provided_key: str | None) -> str | None:
"""Get API key from argument first, then environment."""
if provided_key:
return provided_key
return os.environ.get("GEMINI_API_KEY")
def main():
parser = argparse.ArgumentParser(
description="Generate images using Nano Banana Pro (Gemini 3 Pro Image)"
)
parser.add_argument(
"--prompt", "-p",
required=True,
help="Image description/prompt"
)
parser.add_argument(
"--filename", "-f",
required=True,
help="Output filename (e.g., sunset-mountains.png)"
)
parser.add_argument(
"--input-image", "-i",
action="append",
dest="input_images",
metavar="IMAGE",
help="Input image path(s) for editing/composition. Can be specified multiple times (up to 14 images)."
)
parser.add_argument(
"--resolution", "-r",
choices=["1K", "2K", "4K"],
default="1K",
help="Output resolution: 1K (default), 2K, or 4K"
)
parser.add_argument(
"--api-key", "-k",
help="Gemini API key (overrides GEMINI_API_KEY env var)"
)
args = parser.parse_args()
# Get API key
api_key = get_api_key(args.api_key)
if not api_key:
print("Error: No API key provided.", file=sys.stderr)
print("Please either:", file=sys.stderr)
print(" 1. Provide --api-key argument", file=sys.stderr)
print(" 2. Set GEMINI_API_KEY environment variable", file=sys.stderr)
sys.exit(1)
# Import here after checking API key to avoid slow import on error
from google import genai
from google.genai import types
from PIL import Image as PILImage
# Initialise client
client = genai.Client(api_key=api_key)
# Set up output path
output_path = Path(args.filename)
output_path.parent.mkdir(parents=True, exist_ok=True)
# Load input images if provided (up to 14 supported by Nano Banana Pro)
input_images = []
output_resolution = args.resolution
if args.input_images:
if len(args.input_images) > 14:
print(f"Error: Too many input images ({len(args.input_images)}). Maximum is 14.", file=sys.stderr)
sys.exit(1)
max_input_dim = 0
for img_path in args.input_images:
try:
img = PILImage.open(img_path)
input_images.append(img)
print(f"Loaded input image: {img_path}")
# Track largest dimension for auto-resolution
width, height = img.size
max_input_dim = max(max_input_dim, width, height)
except Exception as e:
print(f"Error loading input image '{img_path}': {e}", file=sys.stderr)
sys.exit(1)
# Auto-detect resolution from largest input if not explicitly set
if args.resolution == "1K" and max_input_dim > 0: # Default value
if max_input_dim >= 3000:
output_resolution = "4K"
elif max_input_dim >= 1500:
output_resolution = "2K"
else:
output_resolution = "1K"
print(f"Auto-detected resolution: {output_resolution} (from max input dimension {max_input_dim})")
# Build contents (images first if editing, prompt only if generating)
if input_images:
contents = [*input_images, args.prompt]
img_count = len(input_images)
print(f"Processing {img_count} image{'s' if img_count > 1 else ''} with resolution {output_resolution}...")
else:
contents = args.prompt
print(f"Generating image with resolution {output_resolution}...")
try:
response = client.models.generate_content(
model="gemini-3-pro-image-preview",
contents=contents,
config=types.GenerateContentConfig(
response_modalities=["TEXT", "IMAGE"],
image_config=types.ImageConfig(
image_size=output_resolution
)
)
)
# Process response and convert to PNG
image_saved = False
for part in response.parts:
if part.text is not None:
print(f"Model response: {part.text}")
elif part.inline_data is not None:
# Convert inline data to PIL Image and save as PNG
from io import BytesIO
# inline_data.data is already bytes, not base64
image_data = part.inline_data.data
if isinstance(image_data, str):
# If it's a string, it might be base64
import base64
image_data = base64.b64decode(image_data)
image = PILImage.open(BytesIO(image_data))
# Ensure RGB mode for PNG (convert RGBA to RGB with white background if needed)
if image.mode == 'RGBA':
rgb_image = PILImage.new('RGB', image.size, (255, 255, 255))
rgb_image.paste(image, mask=image.split()[3])
rgb_image.save(str(output_path), 'PNG')
elif image.mode == 'RGB':
image.save(str(output_path), 'PNG')
else:
image.convert('RGB').save(str(output_path), 'PNG')
image_saved = True
if image_saved:
full_path = output_path.resolve()
print(f"\nImage saved: {full_path}")
# Moltbot parses MEDIA tokens and will attach the file on supported providers.
print(f"MEDIA: {full_path}")
else:
print("Error: No image was generated in the response.", file=sys.stderr)
sys.exit(1)
except Exception as e:
print(f"Error generating image: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()