346 lines
10 KiB
TypeScript
346 lines
10 KiB
TypeScript
import type { AgentMessage } from "@mariozechner/pi-agent-core";
|
|
import type { ExtensionContext } from "@mariozechner/pi-coding-agent";
|
|
import { estimateTokens, generateSummary } from "@mariozechner/pi-coding-agent";
|
|
|
|
import { DEFAULT_CONTEXT_TOKENS } from "./defaults.js";
|
|
|
|
export const BASE_CHUNK_RATIO = 0.4;
|
|
export const MIN_CHUNK_RATIO = 0.15;
|
|
export const SAFETY_MARGIN = 1.2; // 20% buffer for estimateTokens() inaccuracy
|
|
const DEFAULT_SUMMARY_FALLBACK = "No prior history.";
|
|
const DEFAULT_PARTS = 2;
|
|
const MERGE_SUMMARIES_INSTRUCTIONS =
|
|
"Merge these partial summaries into a single cohesive summary. Preserve decisions," +
|
|
" TODOs, open questions, and any constraints.";
|
|
|
|
export function estimateMessagesTokens(messages: AgentMessage[]): number {
|
|
return messages.reduce((sum, message) => sum + estimateTokens(message), 0);
|
|
}
|
|
|
|
function normalizeParts(parts: number, messageCount: number): number {
|
|
if (!Number.isFinite(parts) || parts <= 1) return 1;
|
|
return Math.min(Math.max(1, Math.floor(parts)), Math.max(1, messageCount));
|
|
}
|
|
|
|
export function splitMessagesByTokenShare(
|
|
messages: AgentMessage[],
|
|
parts = DEFAULT_PARTS,
|
|
): AgentMessage[][] {
|
|
if (messages.length === 0) return [];
|
|
const normalizedParts = normalizeParts(parts, messages.length);
|
|
if (normalizedParts <= 1) return [messages];
|
|
|
|
const totalTokens = estimateMessagesTokens(messages);
|
|
const targetTokens = totalTokens / normalizedParts;
|
|
const chunks: AgentMessage[][] = [];
|
|
let current: AgentMessage[] = [];
|
|
let currentTokens = 0;
|
|
|
|
for (const message of messages) {
|
|
const messageTokens = estimateTokens(message);
|
|
if (
|
|
chunks.length < normalizedParts - 1 &&
|
|
current.length > 0 &&
|
|
currentTokens + messageTokens > targetTokens
|
|
) {
|
|
chunks.push(current);
|
|
current = [];
|
|
currentTokens = 0;
|
|
}
|
|
|
|
current.push(message);
|
|
currentTokens += messageTokens;
|
|
}
|
|
|
|
if (current.length > 0) {
|
|
chunks.push(current);
|
|
}
|
|
|
|
return chunks;
|
|
}
|
|
|
|
export function chunkMessagesByMaxTokens(
|
|
messages: AgentMessage[],
|
|
maxTokens: number,
|
|
): AgentMessage[][] {
|
|
if (messages.length === 0) return [];
|
|
|
|
const chunks: AgentMessage[][] = [];
|
|
let currentChunk: AgentMessage[] = [];
|
|
let currentTokens = 0;
|
|
|
|
for (const message of messages) {
|
|
const messageTokens = estimateTokens(message);
|
|
if (currentChunk.length > 0 && currentTokens + messageTokens > maxTokens) {
|
|
chunks.push(currentChunk);
|
|
currentChunk = [];
|
|
currentTokens = 0;
|
|
}
|
|
|
|
currentChunk.push(message);
|
|
currentTokens += messageTokens;
|
|
|
|
if (messageTokens > maxTokens) {
|
|
// Split oversized messages to avoid unbounded chunk growth.
|
|
chunks.push(currentChunk);
|
|
currentChunk = [];
|
|
currentTokens = 0;
|
|
}
|
|
}
|
|
|
|
if (currentChunk.length > 0) {
|
|
chunks.push(currentChunk);
|
|
}
|
|
|
|
return chunks;
|
|
}
|
|
|
|
/**
|
|
* Compute adaptive chunk ratio based on average message size.
|
|
* When messages are large, we use smaller chunks to avoid exceeding model limits.
|
|
*/
|
|
export function computeAdaptiveChunkRatio(messages: AgentMessage[], contextWindow: number): number {
|
|
if (messages.length === 0) return BASE_CHUNK_RATIO;
|
|
|
|
const totalTokens = estimateMessagesTokens(messages);
|
|
const avgTokens = totalTokens / messages.length;
|
|
|
|
// Apply safety margin to account for estimation inaccuracy
|
|
const safeAvgTokens = avgTokens * SAFETY_MARGIN;
|
|
const avgRatio = safeAvgTokens / contextWindow;
|
|
|
|
// If average message is > 10% of context, reduce chunk ratio
|
|
if (avgRatio > 0.1) {
|
|
const reduction = Math.min(avgRatio * 2, BASE_CHUNK_RATIO - MIN_CHUNK_RATIO);
|
|
return Math.max(MIN_CHUNK_RATIO, BASE_CHUNK_RATIO - reduction);
|
|
}
|
|
|
|
return BASE_CHUNK_RATIO;
|
|
}
|
|
|
|
/**
|
|
* Check if a single message is too large to summarize.
|
|
* If single message > 50% of context, it can't be summarized safely.
|
|
*/
|
|
export function isOversizedForSummary(msg: AgentMessage, contextWindow: number): boolean {
|
|
const tokens = estimateTokens(msg) * SAFETY_MARGIN;
|
|
return tokens > contextWindow * 0.5;
|
|
}
|
|
|
|
async function summarizeChunks(params: {
|
|
messages: AgentMessage[];
|
|
model: NonNullable<ExtensionContext["model"]>;
|
|
apiKey: string;
|
|
signal: AbortSignal;
|
|
reserveTokens: number;
|
|
maxChunkTokens: number;
|
|
customInstructions?: string;
|
|
previousSummary?: string;
|
|
}): Promise<string> {
|
|
if (params.messages.length === 0) {
|
|
return params.previousSummary ?? DEFAULT_SUMMARY_FALLBACK;
|
|
}
|
|
|
|
const chunks = chunkMessagesByMaxTokens(params.messages, params.maxChunkTokens);
|
|
let summary = params.previousSummary;
|
|
|
|
for (const chunk of chunks) {
|
|
summary = await generateSummary(
|
|
chunk,
|
|
params.model,
|
|
params.reserveTokens,
|
|
params.apiKey,
|
|
params.signal,
|
|
params.customInstructions,
|
|
summary,
|
|
);
|
|
}
|
|
|
|
return summary ?? DEFAULT_SUMMARY_FALLBACK;
|
|
}
|
|
|
|
/**
|
|
* Summarize with progressive fallback for handling oversized messages.
|
|
* If full summarization fails, tries partial summarization excluding oversized messages.
|
|
*/
|
|
export async function summarizeWithFallback(params: {
|
|
messages: AgentMessage[];
|
|
model: NonNullable<ExtensionContext["model"]>;
|
|
apiKey: string;
|
|
signal: AbortSignal;
|
|
reserveTokens: number;
|
|
maxChunkTokens: number;
|
|
contextWindow: number;
|
|
customInstructions?: string;
|
|
previousSummary?: string;
|
|
}): Promise<string> {
|
|
const { messages, contextWindow } = params;
|
|
|
|
if (messages.length === 0) {
|
|
return params.previousSummary ?? DEFAULT_SUMMARY_FALLBACK;
|
|
}
|
|
|
|
// Try full summarization first
|
|
try {
|
|
return await summarizeChunks(params);
|
|
} catch (fullError) {
|
|
console.warn(
|
|
`Full summarization failed, trying partial: ${
|
|
fullError instanceof Error ? fullError.message : String(fullError)
|
|
}`,
|
|
);
|
|
}
|
|
|
|
// Fallback 1: Summarize only small messages, note oversized ones
|
|
const smallMessages: AgentMessage[] = [];
|
|
const oversizedNotes: string[] = [];
|
|
|
|
for (const msg of messages) {
|
|
if (isOversizedForSummary(msg, contextWindow)) {
|
|
const role = (msg as { role?: string }).role ?? "message";
|
|
const tokens = estimateTokens(msg);
|
|
oversizedNotes.push(
|
|
`[Large ${role} (~${Math.round(tokens / 1000)}K tokens) omitted from summary]`,
|
|
);
|
|
} else {
|
|
smallMessages.push(msg);
|
|
}
|
|
}
|
|
|
|
if (smallMessages.length > 0) {
|
|
try {
|
|
const partialSummary = await summarizeChunks({
|
|
...params,
|
|
messages: smallMessages,
|
|
});
|
|
const notes = oversizedNotes.length > 0 ? `\n\n${oversizedNotes.join("\n")}` : "";
|
|
return partialSummary + notes;
|
|
} catch (partialError) {
|
|
console.warn(
|
|
`Partial summarization also failed: ${
|
|
partialError instanceof Error ? partialError.message : String(partialError)
|
|
}`,
|
|
);
|
|
}
|
|
}
|
|
|
|
// Final fallback: Just note what was there
|
|
return (
|
|
`Context contained ${messages.length} messages (${oversizedNotes.length} oversized). ` +
|
|
`Summary unavailable due to size limits.`
|
|
);
|
|
}
|
|
|
|
export async function summarizeInStages(params: {
|
|
messages: AgentMessage[];
|
|
model: NonNullable<ExtensionContext["model"]>;
|
|
apiKey: string;
|
|
signal: AbortSignal;
|
|
reserveTokens: number;
|
|
maxChunkTokens: number;
|
|
contextWindow: number;
|
|
customInstructions?: string;
|
|
previousSummary?: string;
|
|
parts?: number;
|
|
minMessagesForSplit?: number;
|
|
}): Promise<string> {
|
|
const { messages } = params;
|
|
if (messages.length === 0) {
|
|
return params.previousSummary ?? DEFAULT_SUMMARY_FALLBACK;
|
|
}
|
|
|
|
const minMessagesForSplit = Math.max(2, params.minMessagesForSplit ?? 4);
|
|
const parts = normalizeParts(params.parts ?? DEFAULT_PARTS, messages.length);
|
|
const totalTokens = estimateMessagesTokens(messages);
|
|
|
|
if (parts <= 1 || messages.length < minMessagesForSplit || totalTokens <= params.maxChunkTokens) {
|
|
return summarizeWithFallback(params);
|
|
}
|
|
|
|
const splits = splitMessagesByTokenShare(messages, parts).filter((chunk) => chunk.length > 0);
|
|
if (splits.length <= 1) {
|
|
return summarizeWithFallback(params);
|
|
}
|
|
|
|
const partialSummaries: string[] = [];
|
|
for (const chunk of splits) {
|
|
partialSummaries.push(
|
|
await summarizeWithFallback({
|
|
...params,
|
|
messages: chunk,
|
|
previousSummary: undefined,
|
|
}),
|
|
);
|
|
}
|
|
|
|
if (partialSummaries.length === 1) {
|
|
return partialSummaries[0];
|
|
}
|
|
|
|
const summaryMessages: AgentMessage[] = partialSummaries.map((summary) => ({
|
|
role: "user",
|
|
content: summary,
|
|
timestamp: Date.now(),
|
|
}));
|
|
|
|
const mergeInstructions = params.customInstructions
|
|
? `${MERGE_SUMMARIES_INSTRUCTIONS}\n\nAdditional focus:\n${params.customInstructions}`
|
|
: MERGE_SUMMARIES_INSTRUCTIONS;
|
|
|
|
return summarizeWithFallback({
|
|
...params,
|
|
messages: summaryMessages,
|
|
customInstructions: mergeInstructions,
|
|
});
|
|
}
|
|
|
|
export function pruneHistoryForContextShare(params: {
|
|
messages: AgentMessage[];
|
|
maxContextTokens: number;
|
|
maxHistoryShare?: number;
|
|
parts?: number;
|
|
}): {
|
|
messages: AgentMessage[];
|
|
droppedMessagesList: AgentMessage[];
|
|
droppedChunks: number;
|
|
droppedMessages: number;
|
|
droppedTokens: number;
|
|
keptTokens: number;
|
|
budgetTokens: number;
|
|
} {
|
|
const maxHistoryShare = params.maxHistoryShare ?? 0.5;
|
|
const budgetTokens = Math.max(1, Math.floor(params.maxContextTokens * maxHistoryShare));
|
|
let keptMessages = params.messages;
|
|
const allDroppedMessages: AgentMessage[] = [];
|
|
let droppedChunks = 0;
|
|
let droppedMessages = 0;
|
|
let droppedTokens = 0;
|
|
|
|
const parts = normalizeParts(params.parts ?? DEFAULT_PARTS, keptMessages.length);
|
|
|
|
while (keptMessages.length > 0 && estimateMessagesTokens(keptMessages) > budgetTokens) {
|
|
const chunks = splitMessagesByTokenShare(keptMessages, parts);
|
|
if (chunks.length <= 1) break;
|
|
const [dropped, ...rest] = chunks;
|
|
droppedChunks += 1;
|
|
droppedMessages += dropped.length;
|
|
droppedTokens += estimateMessagesTokens(dropped);
|
|
allDroppedMessages.push(...dropped);
|
|
keptMessages = rest.flat();
|
|
}
|
|
|
|
return {
|
|
messages: keptMessages,
|
|
droppedMessagesList: allDroppedMessages,
|
|
droppedChunks,
|
|
droppedMessages,
|
|
droppedTokens,
|
|
keptTokens: estimateMessagesTokens(keptMessages),
|
|
budgetTokens,
|
|
};
|
|
}
|
|
|
|
export function resolveContextWindowTokens(model?: ExtensionContext["model"]): number {
|
|
return Math.max(1, Math.floor(model?.contextWindow ?? DEFAULT_CONTEXT_TOKENS));
|
|
}
|