262 lines
8.2 KiB
TypeScript
262 lines
8.2 KiB
TypeScript
import fs from "node:fs/promises";
|
|
import os from "node:os";
|
|
import path from "node:path";
|
|
|
|
import { afterEach, beforeEach, describe, expect, it, vi } from "vitest";
|
|
|
|
import { getMemorySearchManager, type MemoryIndexManager } from "./index.js";
|
|
|
|
const embedBatch = vi.fn(async (texts: string[]) => texts.map(() => [0, 1, 0]));
|
|
const embedQuery = vi.fn(async () => [0, 1, 0]);
|
|
|
|
vi.mock("./embeddings.js", () => ({
|
|
createEmbeddingProvider: async () => ({
|
|
requestedProvider: "openai",
|
|
provider: {
|
|
id: "mock",
|
|
model: "mock-embed",
|
|
embedQuery,
|
|
embedBatch,
|
|
},
|
|
}),
|
|
}));
|
|
|
|
describe("memory embedding batches", () => {
|
|
let workspaceDir: string;
|
|
let indexPath: string;
|
|
let manager: MemoryIndexManager | null = null;
|
|
|
|
beforeEach(async () => {
|
|
embedBatch.mockClear();
|
|
embedQuery.mockClear();
|
|
workspaceDir = await fs.mkdtemp(path.join(os.tmpdir(), "clawdbot-mem-"));
|
|
indexPath = path.join(workspaceDir, "index.sqlite");
|
|
await fs.mkdir(path.join(workspaceDir, "memory"));
|
|
});
|
|
|
|
afterEach(async () => {
|
|
if (manager) {
|
|
await manager.close();
|
|
manager = null;
|
|
}
|
|
await fs.rm(workspaceDir, { recursive: true, force: true });
|
|
});
|
|
|
|
it("splits large files across multiple embedding batches", async () => {
|
|
const line = "a".repeat(200);
|
|
const content = Array.from({ length: 200 }, () => line).join("\n");
|
|
await fs.writeFile(path.join(workspaceDir, "memory", "2026-01-03.md"), content);
|
|
|
|
const cfg = {
|
|
agents: {
|
|
defaults: {
|
|
workspace: workspaceDir,
|
|
memorySearch: {
|
|
provider: "openai",
|
|
model: "mock-embed",
|
|
store: { path: indexPath },
|
|
chunking: { tokens: 200, overlap: 0 },
|
|
sync: { watch: false, onSessionStart: false, onSearch: false },
|
|
query: { minScore: 0 },
|
|
},
|
|
},
|
|
list: [{ id: "main", default: true }],
|
|
},
|
|
};
|
|
|
|
const result = await getMemorySearchManager({ cfg, agentId: "main" });
|
|
expect(result.manager).not.toBeNull();
|
|
if (!result.manager) throw new Error("manager missing");
|
|
manager = result.manager;
|
|
await manager.sync({ force: true });
|
|
|
|
const status = manager.status();
|
|
const totalTexts = embedBatch.mock.calls.reduce((sum, call) => sum + (call[0]?.length ?? 0), 0);
|
|
expect(totalTexts).toBe(status.chunks);
|
|
expect(embedBatch.mock.calls.length).toBeGreaterThan(1);
|
|
});
|
|
|
|
it("keeps small files in a single embedding batch", async () => {
|
|
const line = "b".repeat(120);
|
|
const content = Array.from({ length: 12 }, () => line).join("\n");
|
|
await fs.writeFile(path.join(workspaceDir, "memory", "2026-01-04.md"), content);
|
|
|
|
const cfg = {
|
|
agents: {
|
|
defaults: {
|
|
workspace: workspaceDir,
|
|
memorySearch: {
|
|
provider: "openai",
|
|
model: "mock-embed",
|
|
store: { path: indexPath },
|
|
chunking: { tokens: 200, overlap: 0 },
|
|
sync: { watch: false, onSessionStart: false, onSearch: false },
|
|
query: { minScore: 0 },
|
|
},
|
|
},
|
|
list: [{ id: "main", default: true }],
|
|
},
|
|
};
|
|
|
|
const result = await getMemorySearchManager({ cfg, agentId: "main" });
|
|
expect(result.manager).not.toBeNull();
|
|
if (!result.manager) throw new Error("manager missing");
|
|
manager = result.manager;
|
|
await manager.sync({ force: true });
|
|
|
|
expect(embedBatch.mock.calls.length).toBe(1);
|
|
});
|
|
|
|
it("reports sync progress totals", async () => {
|
|
const line = "c".repeat(120);
|
|
const content = Array.from({ length: 20 }, () => line).join("\n");
|
|
await fs.writeFile(path.join(workspaceDir, "memory", "2026-01-05.md"), content);
|
|
|
|
const cfg = {
|
|
agents: {
|
|
defaults: {
|
|
workspace: workspaceDir,
|
|
memorySearch: {
|
|
provider: "openai",
|
|
model: "mock-embed",
|
|
store: { path: indexPath },
|
|
chunking: { tokens: 200, overlap: 0 },
|
|
sync: { watch: false, onSessionStart: false, onSearch: false },
|
|
query: { minScore: 0 },
|
|
},
|
|
},
|
|
list: [{ id: "main", default: true }],
|
|
},
|
|
};
|
|
|
|
const result = await getMemorySearchManager({ cfg, agentId: "main" });
|
|
expect(result.manager).not.toBeNull();
|
|
if (!result.manager) throw new Error("manager missing");
|
|
manager = result.manager;
|
|
const updates: Array<{ completed: number; total: number; label?: string }> = [];
|
|
await manager.sync({
|
|
force: true,
|
|
progress: (update) => {
|
|
updates.push(update);
|
|
},
|
|
});
|
|
|
|
expect(updates.length).toBeGreaterThan(0);
|
|
expect(updates.some((update) => update.label?.includes("/"))).toBe(true);
|
|
const last = updates[updates.length - 1];
|
|
expect(last?.total).toBeGreaterThan(0);
|
|
expect(last?.completed).toBe(last?.total);
|
|
});
|
|
|
|
it("retries embeddings on rate limit errors", async () => {
|
|
const line = "d".repeat(120);
|
|
const content = Array.from({ length: 12 }, () => line).join("\n");
|
|
await fs.writeFile(path.join(workspaceDir, "memory", "2026-01-06.md"), content);
|
|
|
|
let calls = 0;
|
|
embedBatch.mockImplementation(async (texts: string[]) => {
|
|
calls += 1;
|
|
if (calls < 3) {
|
|
throw new Error("openai embeddings failed: 429 rate limit");
|
|
}
|
|
return texts.map(() => [0, 1, 0]);
|
|
});
|
|
|
|
const cfg = {
|
|
agents: {
|
|
defaults: {
|
|
workspace: workspaceDir,
|
|
memorySearch: {
|
|
provider: "openai",
|
|
model: "mock-embed",
|
|
store: { path: indexPath },
|
|
chunking: { tokens: 200, overlap: 0 },
|
|
sync: { watch: false, onSessionStart: false, onSearch: false },
|
|
query: { minScore: 0 },
|
|
},
|
|
},
|
|
list: [{ id: "main", default: true }],
|
|
},
|
|
};
|
|
|
|
const result = await getMemorySearchManager({ cfg, agentId: "main" });
|
|
expect(result.manager).not.toBeNull();
|
|
if (!result.manager) throw new Error("manager missing");
|
|
manager = result.manager;
|
|
|
|
await manager.sync({ force: true });
|
|
|
|
expect(calls).toBe(3);
|
|
}, 10000);
|
|
|
|
it("retries embeddings on transient 5xx errors", async () => {
|
|
const line = "e".repeat(120);
|
|
const content = Array.from({ length: 12 }, () => line).join("\n");
|
|
await fs.writeFile(path.join(workspaceDir, "memory", "2026-01-08.md"), content);
|
|
|
|
let calls = 0;
|
|
embedBatch.mockImplementation(async (texts: string[]) => {
|
|
calls += 1;
|
|
if (calls < 3) {
|
|
throw new Error("openai embeddings failed: 502 Bad Gateway (cloudflare)");
|
|
}
|
|
return texts.map(() => [0, 1, 0]);
|
|
});
|
|
|
|
const cfg = {
|
|
agents: {
|
|
defaults: {
|
|
workspace: workspaceDir,
|
|
memorySearch: {
|
|
provider: "openai",
|
|
model: "mock-embed",
|
|
store: { path: indexPath },
|
|
chunking: { tokens: 200, overlap: 0 },
|
|
sync: { watch: false, onSessionStart: false, onSearch: false },
|
|
query: { minScore: 0 },
|
|
},
|
|
},
|
|
list: [{ id: "main", default: true }],
|
|
},
|
|
};
|
|
|
|
const result = await getMemorySearchManager({ cfg, agentId: "main" });
|
|
expect(result.manager).not.toBeNull();
|
|
if (!result.manager) throw new Error("manager missing");
|
|
manager = result.manager;
|
|
|
|
await manager.sync({ force: true });
|
|
|
|
expect(calls).toBe(3);
|
|
}, 10000);
|
|
|
|
it("skips empty chunks so embeddings input stays valid", async () => {
|
|
await fs.writeFile(path.join(workspaceDir, "memory", "2026-01-07.md"), "\n\n\n");
|
|
|
|
const cfg = {
|
|
agents: {
|
|
defaults: {
|
|
workspace: workspaceDir,
|
|
memorySearch: {
|
|
provider: "openai",
|
|
model: "mock-embed",
|
|
store: { path: indexPath },
|
|
sync: { watch: false, onSessionStart: false, onSearch: false },
|
|
query: { minScore: 0 },
|
|
},
|
|
},
|
|
list: [{ id: "main", default: true }],
|
|
},
|
|
};
|
|
|
|
const result = await getMemorySearchManager({ cfg, agentId: "main" });
|
|
expect(result.manager).not.toBeNull();
|
|
if (!result.manager) throw new Error("manager missing");
|
|
manager = result.manager;
|
|
await manager.sync({ force: true });
|
|
|
|
const inputs = embedBatch.mock.calls.flatMap((call) => call[0] ?? []);
|
|
expect(inputs).not.toContain("");
|
|
});
|
|
});
|