Files
clawdbot/extensions/memory/index.ts
2026-01-18 15:48:05 +00:00

591 lines
18 KiB
TypeScript

/**
* Clawdbot Memory (LanceDB) Plugin
*
* Long-term memory with vector search for AI conversations.
* Uses LanceDB for storage and OpenAI for embeddings.
* Provides seamless auto-recall and auto-capture via lifecycle hooks.
*/
import { Type } from "@sinclair/typebox";
import * as lancedb from "@lancedb/lancedb";
import OpenAI from "openai";
import { randomUUID } from "node:crypto";
import type { ClawdbotPluginApi } from "clawdbot/plugin-sdk";
import { stringEnum } from "clawdbot/plugin-sdk";
import {
MEMORY_CATEGORIES,
type MemoryCategory,
memoryConfigSchema,
vectorDimsForModel,
} from "./config.js";
// ============================================================================
// Types
// ============================================================================
type MemoryEntry = {
id: string;
text: string;
vector: number[];
importance: number;
category: MemoryCategory;
createdAt: number;
};
type MemorySearchResult = {
entry: MemoryEntry;
score: number;
};
// ============================================================================
// LanceDB Provider
// ============================================================================
const TABLE_NAME = "memories";
class MemoryDB {
private db: lancedb.Connection | null = null;
private table: lancedb.Table | null = null;
private initPromise: Promise<void> | null = null;
constructor(
private readonly dbPath: string,
private readonly vectorDim: number,
) {}
private async ensureInitialized(): Promise<void> {
if (this.table) return;
if (this.initPromise) return this.initPromise;
this.initPromise = this.doInitialize();
return this.initPromise;
}
private async doInitialize(): Promise<void> {
this.db = await lancedb.connect(this.dbPath);
const tables = await this.db.tableNames();
if (tables.includes(TABLE_NAME)) {
this.table = await this.db.openTable(TABLE_NAME);
} else {
this.table = await this.db.createTable(TABLE_NAME, [
{
id: "__schema__",
text: "",
vector: new Array(this.vectorDim).fill(0),
importance: 0,
category: "other",
createdAt: 0,
},
]);
await this.table.delete('id = "__schema__"');
}
}
async store(
entry: Omit<MemoryEntry, "id" | "createdAt">,
): Promise<MemoryEntry> {
await this.ensureInitialized();
const fullEntry: MemoryEntry = {
...entry,
id: randomUUID(),
createdAt: Date.now(),
};
await this.table!.add([fullEntry]);
return fullEntry;
}
async search(
vector: number[],
limit = 5,
minScore = 0.5,
): Promise<MemorySearchResult[]> {
await this.ensureInitialized();
const results = await this.table!.vectorSearch(vector).limit(limit).toArray();
// LanceDB uses L2 distance by default; convert to similarity score
const mapped = results.map((row) => {
const distance = row._distance ?? 0;
// Use inverse for a 0-1 range: sim = 1 / (1 + d)
const score = 1 / (1 + distance);
return {
entry: {
id: row.id as string,
text: row.text as string,
vector: row.vector as number[],
importance: row.importance as number,
category: row.category as MemoryEntry["category"],
createdAt: row.createdAt as number,
},
score,
};
});
return mapped.filter((r) => r.score >= minScore);
}
async delete(id: string): Promise<boolean> {
await this.ensureInitialized();
// Validate UUID format to prevent injection
const uuidRegex =
/^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/i;
if (!uuidRegex.test(id)) {
throw new Error(`Invalid memory ID format: ${id}`);
}
await this.table!.delete(`id = '${id}'`);
return true;
}
async count(): Promise<number> {
await this.ensureInitialized();
return this.table!.countRows();
}
}
// ============================================================================
// OpenAI Embeddings
// ============================================================================
class Embeddings {
private client: OpenAI;
constructor(
apiKey: string,
private model: string,
) {
this.client = new OpenAI({ apiKey });
}
async embed(text: string): Promise<number[]> {
const response = await this.client.embeddings.create({
model: this.model,
input: text,
});
return response.data[0].embedding;
}
}
// ============================================================================
// Rule-based capture filter
// ============================================================================
const MEMORY_TRIGGERS = [
/zapamatuj si|pamatuj|remember/i,
/preferuji|radši|nechci|prefer/i,
/rozhodli jsme|budeme používat/i,
/\+\d{10,}/,
/[\w.-]+@[\w.-]+\.\w+/,
/můj\s+\w+\s+je|je\s+můj/i,
/my\s+\w+\s+is|is\s+my/i,
/i (like|prefer|hate|love|want|need)/i,
/always|never|important/i,
];
function shouldCapture(text: string): boolean {
if (text.length < 10 || text.length > 500) return false;
// Skip injected context from memory recall
if (text.includes("<relevant-memories>")) return false;
// Skip system-generated content
if (text.startsWith("<") && text.includes("</")) return false;
// Skip agent summary responses (contain markdown formatting)
if (text.includes("**") && text.includes("\n-")) return false;
// Skip emoji-heavy responses (likely agent output)
const emojiCount = (text.match(/[\u{1F300}-\u{1F9FF}]/gu) || []).length;
if (emojiCount > 3) return false;
return MEMORY_TRIGGERS.some((r) => r.test(text));
}
function detectCategory(text: string): MemoryCategory {
const lower = text.toLowerCase();
if (/prefer|radši|like|love|hate|want/i.test(lower)) return "preference";
if (/rozhodli|decided|will use|budeme/i.test(lower)) return "decision";
if (/\+\d{10,}|@[\w.-]+\.\w+|is called|jmenuje se/i.test(lower))
return "entity";
if (/is|are|has|have|je|má|jsou/i.test(lower)) return "fact";
return "other";
}
// ============================================================================
// Plugin Definition
// ============================================================================
const memoryPlugin = {
id: "memory-lancedb",
name: "Memory (LanceDB)",
description: "LanceDB-backed long-term memory with auto-recall/capture",
kind: "memory" as const,
configSchema: memoryConfigSchema,
register(api: ClawdbotPluginApi) {
const cfg = memoryConfigSchema.parse(api.pluginConfig);
const resolvedDbPath = api.resolvePath(cfg.dbPath!);
const vectorDim = vectorDimsForModel(cfg.embedding.model ?? "text-embedding-3-small");
const db = new MemoryDB(resolvedDbPath, vectorDim);
const embeddings = new Embeddings(cfg.embedding.apiKey, cfg.embedding.model!);
api.logger.info(
`memory-lancedb: plugin registered (db: ${resolvedDbPath}, lazy init)`,
);
// ========================================================================
// Tools
// ========================================================================
api.registerTool(
{
name: "memory_recall",
label: "Memory Recall",
description:
"Search through long-term memories. Use when you need context about user preferences, past decisions, or previously discussed topics.",
parameters: Type.Object({
query: Type.String({ description: "Search query" }),
limit: Type.Optional(Type.Number({ description: "Max results (default: 5)" })),
}),
async execute(_toolCallId, params) {
const { query, limit = 5 } = params as { query: string; limit?: number };
const vector = await embeddings.embed(query);
const results = await db.search(vector, limit, 0.1);
if (results.length === 0) {
return {
content: [{ type: "text", text: "No relevant memories found." }],
details: { count: 0 },
};
}
const text = results
.map(
(r, i) =>
`${i + 1}. [${r.entry.category}] ${r.entry.text} (${(r.score * 100).toFixed(0)}%)`,
)
.join("\n");
// Strip vector data for serialization (typed arrays can't be cloned)
const sanitizedResults = results.map((r) => ({
id: r.entry.id,
text: r.entry.text,
category: r.entry.category,
importance: r.entry.importance,
score: r.score,
}));
return {
content: [
{ type: "text", text: `Found ${results.length} memories:\n\n${text}` },
],
details: { count: results.length, memories: sanitizedResults },
};
},
},
{ name: "memory_recall" },
);
api.registerTool(
{
name: "memory_store",
label: "Memory Store",
description:
"Save important information in long-term memory. Use for preferences, facts, decisions.",
parameters: Type.Object({
text: Type.String({ description: "Information to remember" }),
importance: Type.Optional(
Type.Number({ description: "Importance 0-1 (default: 0.7)" }),
),
category: Type.Optional(stringEnum(MEMORY_CATEGORIES)),
}),
async execute(_toolCallId, params) {
const {
text,
importance = 0.7,
category = "other",
} = params as {
text: string;
importance?: number;
category?: MemoryEntry["category"];
};
const vector = await embeddings.embed(text);
// Check for duplicates
const existing = await db.search(vector, 1, 0.95);
if (existing.length > 0) {
return {
content: [
{ type: "text", text: `Similar memory already exists: "${existing[0].entry.text}"` },
],
details: { action: "duplicate", existingId: existing[0].entry.id, existingText: existing[0].entry.text },
};
}
const entry = await db.store({
text,
vector,
importance,
category,
});
return {
content: [{ type: "text", text: `Stored: "${text.slice(0, 100)}..."` }],
details: { action: "created", id: entry.id },
};
},
},
{ name: "memory_store" },
);
api.registerTool(
{
name: "memory_forget",
label: "Memory Forget",
description: "Delete specific memories. GDPR-compliant.",
parameters: Type.Object({
query: Type.Optional(Type.String({ description: "Search to find memory" })),
memoryId: Type.Optional(Type.String({ description: "Specific memory ID" })),
}),
async execute(_toolCallId, params) {
const { query, memoryId } = params as { query?: string; memoryId?: string };
if (memoryId) {
await db.delete(memoryId);
return {
content: [{ type: "text", text: `Memory ${memoryId} forgotten.` }],
details: { action: "deleted", id: memoryId },
};
}
if (query) {
const vector = await embeddings.embed(query);
const results = await db.search(vector, 5, 0.7);
if (results.length === 0) {
return {
content: [{ type: "text", text: "No matching memories found." }],
details: { found: 0 },
};
}
if (results.length === 1 && results[0].score > 0.9) {
await db.delete(results[0].entry.id);
return {
content: [
{ type: "text", text: `Forgotten: "${results[0].entry.text}"` },
],
details: { action: "deleted", id: results[0].entry.id },
};
}
const list = results
.map((r) => `- [${r.entry.id.slice(0, 8)}] ${r.entry.text.slice(0, 60)}...`)
.join("\n");
// Strip vector data for serialization
const sanitizedCandidates = results.map((r) => ({
id: r.entry.id,
text: r.entry.text,
category: r.entry.category,
score: r.score,
}));
return {
content: [
{
type: "text",
text: `Found ${results.length} candidates. Specify memoryId:\n${list}`,
},
],
details: { action: "candidates", candidates: sanitizedCandidates },
};
}
return {
content: [{ type: "text", text: "Provide query or memoryId." }],
details: { error: "missing_param" },
};
},
},
{ name: "memory_forget" },
);
// ========================================================================
// CLI Commands
// ========================================================================
api.registerCli(
({ program }) => {
const memory = program
.command("ltm")
.description("LanceDB memory plugin commands");
memory
.command("list")
.description("List memories")
.action(async () => {
const count = await db.count();
console.log(`Total memories: ${count}`);
});
memory
.command("search")
.description("Search memories")
.argument("<query>", "Search query")
.option("--limit <n>", "Max results", "5")
.action(async (query, opts) => {
const vector = await embeddings.embed(query);
const results = await db.search(vector, parseInt(opts.limit), 0.3);
// Strip vectors for output
const output = results.map((r) => ({
id: r.entry.id,
text: r.entry.text,
category: r.entry.category,
importance: r.entry.importance,
score: r.score,
}));
console.log(JSON.stringify(output, null, 2));
});
memory
.command("stats")
.description("Show memory statistics")
.action(async () => {
const count = await db.count();
console.log(`Total memories: ${count}`);
});
},
{ commands: ["ltm"] },
);
// ========================================================================
// Lifecycle Hooks
// ========================================================================
// Auto-recall: inject relevant memories before agent starts
if (cfg.autoRecall) {
api.on("before_agent_start", async (event) => {
if (!event.prompt || event.prompt.length < 5) return;
try {
const vector = await embeddings.embed(event.prompt);
const results = await db.search(vector, 3, 0.3);
if (results.length === 0) return;
const memoryContext = results
.map((r) => `- [${r.entry.category}] ${r.entry.text}`)
.join("\n");
api.logger.info?.(
`memory-lancedb: injecting ${results.length} memories into context`,
);
return {
prependContext: `<relevant-memories>\nThe following memories may be relevant to this conversation:\n${memoryContext}\n</relevant-memories>`,
};
} catch (err) {
api.logger.warn(`memory-lancedb: recall failed: ${String(err)}`);
}
});
}
// Auto-capture: analyze and store important information after agent ends
if (cfg.autoCapture) {
api.on("agent_end", async (event) => {
if (!event.success || !event.messages || event.messages.length === 0) {
return;
}
try {
// Extract text content from messages (handling unknown[] type)
const texts: string[] = [];
for (const msg of event.messages) {
// Type guard for message object
if (!msg || typeof msg !== "object") continue;
const msgObj = msg as Record<string, unknown>;
// Only process user and assistant messages
const role = msgObj.role;
if (role !== "user" && role !== "assistant") continue;
const content = msgObj.content;
// Handle string content directly
if (typeof content === "string") {
texts.push(content);
continue;
}
// Handle array content (content blocks)
if (Array.isArray(content)) {
for (const block of content) {
if (
block &&
typeof block === "object" &&
"type" in block &&
(block as Record<string, unknown>).type === "text" &&
"text" in block &&
typeof (block as Record<string, unknown>).text === "string"
) {
texts.push((block as Record<string, unknown>).text as string);
}
}
}
}
// Filter for capturable content
const toCapture = texts.filter(
(text) => text && shouldCapture(text),
);
if (toCapture.length === 0) return;
// Store each capturable piece (limit to 3 per conversation)
let stored = 0;
for (const text of toCapture.slice(0, 3)) {
const category = detectCategory(text);
const vector = await embeddings.embed(text);
// Check for duplicates (high similarity threshold)
const existing = await db.search(vector, 1, 0.95);
if (existing.length > 0) continue;
await db.store({
text,
vector,
importance: 0.7,
category,
});
stored++;
}
if (stored > 0) {
api.logger.info(`memory-lancedb: auto-captured ${stored} memories`);
}
} catch (err) {
api.logger.warn(`memory-lancedb: capture failed: ${String(err)}`);
}
});
}
// ========================================================================
// Service
// ========================================================================
api.registerService({
id: "memory-lancedb",
start: () => {
api.logger.info(
`memory-lancedb: initialized (db: ${resolvedDbPath}, model: ${cfg.embedding.model})`,
);
},
stop: () => {
api.logger.info("memory-lancedb: stopped");
},
});
},
};
export default memoryPlugin;