Backend: - Add weather system with 6 weather types and transition probabilities - Add day/night cycle (dawn, day, dusk, night) with phase modifiers - Add mood system for agents (happy, neutral, sad, anxious) - Add new commands: heal, talk, encourage, revive - Add agent social interaction system with relationships - Add casual mode with auto-revive and reduced decay rates Frontend (Web): - Add world state display (weather, time of day) - Add mood bar to agent cards - Add new action buttons for heal, encourage, talk, revive - Handle new event types from server Unity Client: - Add EnvironmentManager with dynamic sky gradient and island scene - Add WeatherEffects with rain, sun rays, fog, and heat particles - Add SceneBootstrap for automatic visual system initialization - Improve AgentVisual with better character sprites and animations - Add breathing and bobbing idle animations - Add character shadows - Improve UI panels with rounded corners and borders - Improve SpeechBubble with rounded corners and proper tail - Add support for all new server events and commands 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
467 lines
18 KiB
Python
467 lines
18 KiB
Python
"""
|
|
LLM Service - Agent Brain Module.
|
|
Provides AI-powered responses for agents using LiteLLM (supports multiple providers).
|
|
|
|
Supported providers (via environment variables):
|
|
- OpenAI: OPENAI_API_KEY → model="gpt-3.5-turbo" or "gpt-4"
|
|
- Anthropic: ANTHROPIC_API_KEY → model="claude-3-haiku-20240307" or "claude-3-sonnet-20240229"
|
|
- Google: GEMINI_API_KEY → model="gemini/gemini-pro"
|
|
- Azure OpenAI: AZURE_API_KEY + AZURE_API_BASE → model="azure/<deployment-name>"
|
|
- OpenRouter: OPENROUTER_API_KEY → model="openrouter/<model>"
|
|
- Ollama (local): OLLAMA_API_BASE → model="ollama/llama2"
|
|
- Custom/Self-hosted: LLM_API_KEY + LLM_API_BASE → any OpenAI-compatible endpoint
|
|
- And 100+ more providers...
|
|
|
|
Configuration:
|
|
- LLM_MODEL: Model to use (default: gpt-3.5-turbo)
|
|
- LLM_API_BASE: Custom API base URL (for self-hosted or proxy services)
|
|
- LLM_API_KEY: Generic API key (used with LLM_API_BASE)
|
|
- LLM_API_KEY_HEADER: Custom header name for API key (default: none, uses provider default)
|
|
- LLM_MOCK_MODE: Set to "true" to force mock mode
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
import random
|
|
from typing import TYPE_CHECKING
|
|
|
|
if TYPE_CHECKING:
|
|
from .models import Agent
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Mock responses for development without API key
|
|
MOCK_REACTIONS = {
|
|
"feed": [
|
|
"Oh! Finally some food! Thank you stranger!",
|
|
"Mmm, that's delicious! I was starving!",
|
|
"You're too kind! My energy is back!",
|
|
"Food! Glorious food! I love you!",
|
|
],
|
|
"idle_sunny": [
|
|
"What a beautiful day on this island...",
|
|
"The sun feels nice, but I'm getting hungry.",
|
|
"I wonder if rescue will ever come...",
|
|
"At least the weather is good today.",
|
|
],
|
|
"idle_rainy": [
|
|
"This rain is so depressing...",
|
|
"I hope the storm passes soon.",
|
|
"Getting wet and cold out here...",
|
|
"Rain again? Just my luck.",
|
|
],
|
|
"idle_starving": [
|
|
"I'm so hungry... I can barely stand...",
|
|
"Someone please... I need food...",
|
|
"My stomach is eating itself...",
|
|
"Is this how it ends? Starving on a beach?",
|
|
],
|
|
}
|
|
|
|
# Default model configuration
|
|
DEFAULT_MODEL = "gpt-3.5-turbo"
|
|
|
|
|
|
class LLMService:
|
|
"""
|
|
Service for generating AI-powered agent reactions using LiteLLM.
|
|
Supports multiple LLM providers through a unified interface.
|
|
Falls back to mock responses if no API key is configured.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
"""Initialize the LLM service with LiteLLM or mock mode."""
|
|
self._model = os.environ.get("LLM_MODEL", DEFAULT_MODEL)
|
|
self._api_base = os.environ.get("LLM_API_BASE") # Custom base URL
|
|
self._api_key = os.environ.get("LLM_API_KEY") # Generic API key
|
|
self._api_key_header = os.environ.get("LLM_API_KEY_HEADER") # Custom header name
|
|
self._mock_mode = os.environ.get("LLM_MOCK_MODE", "").lower() == "true"
|
|
self._acompletion = None
|
|
self._extra_headers = {}
|
|
|
|
# Build extra headers if custom API key header is specified
|
|
if self._api_key_header and self._api_key:
|
|
self._extra_headers[self._api_key_header] = self._api_key
|
|
logger.info(f"Using custom API key header: {self._api_key_header}")
|
|
|
|
# LiteLLM requires provider-specific API key env var to pass validation
|
|
# Set it to satisfy the check (actual auth uses extra_headers)
|
|
if self._model.startswith("anthropic/"):
|
|
os.environ.setdefault("ANTHROPIC_API_KEY", self._api_key)
|
|
elif self._model.startswith("openai/"):
|
|
os.environ.setdefault("OPENAI_API_KEY", self._api_key)
|
|
|
|
if self._mock_mode:
|
|
logger.info("LLMService running in MOCK mode (forced by LLM_MOCK_MODE)")
|
|
return
|
|
|
|
# Check for any supported API key (order matters for provider detection)
|
|
api_keys = {
|
|
"OPENAI_API_KEY": "OpenAI",
|
|
"ANTHROPIC_API_KEY": "Anthropic",
|
|
"GEMINI_API_KEY": "Google Gemini",
|
|
"AZURE_API_KEY": "Azure OpenAI",
|
|
"AZURE_API_BASE": "Azure OpenAI",
|
|
"OPENROUTER_API_KEY": "OpenRouter",
|
|
"COHERE_API_KEY": "Cohere",
|
|
"HUGGINGFACE_API_KEY": "HuggingFace",
|
|
"OLLAMA_API_BASE": "Ollama (local)",
|
|
"LLM_API_KEY": "Custom (with LLM_API_BASE)",
|
|
"LLM_API_BASE": "Custom endpoint",
|
|
}
|
|
|
|
found_provider = None
|
|
for key, provider in api_keys.items():
|
|
if os.environ.get(key):
|
|
found_provider = provider
|
|
break
|
|
|
|
if not found_provider:
|
|
logger.warning(
|
|
"No LLM API key found in environment. "
|
|
"LLMService running in MOCK mode - using predefined responses. "
|
|
f"Supported keys: {', '.join(api_keys.keys())}"
|
|
)
|
|
self._mock_mode = True
|
|
return
|
|
|
|
try:
|
|
from litellm import acompletion
|
|
self._acompletion = acompletion
|
|
|
|
# Log configuration details
|
|
config_info = f"provider: {found_provider}, model: {self._model}"
|
|
if self._api_base:
|
|
config_info += f", api_base: {self._api_base}"
|
|
logger.info(f"LLMService initialized with LiteLLM ({config_info})")
|
|
except ImportError:
|
|
logger.error("litellm package not installed. Running in MOCK mode.")
|
|
self._mock_mode = True
|
|
except Exception as e:
|
|
logger.error(f"Failed to initialize LiteLLM: {e}. Running in MOCK mode.")
|
|
self._mock_mode = True
|
|
|
|
@property
|
|
def is_mock_mode(self) -> bool:
|
|
"""Check if service is running in mock mode."""
|
|
return self._mock_mode
|
|
|
|
@property
|
|
def model(self) -> str:
|
|
"""Get the current model name."""
|
|
return self._model
|
|
|
|
@property
|
|
def api_base(self) -> str | None:
|
|
"""Get the custom API base URL if configured."""
|
|
return self._api_base
|
|
|
|
def _get_mock_response(self, event_type: str = "feed") -> str:
|
|
"""Get a random mock response for testing without API."""
|
|
responses = MOCK_REACTIONS.get(event_type, MOCK_REACTIONS["feed"])
|
|
return random.choice(responses)
|
|
|
|
async def generate_reaction(
|
|
self,
|
|
agent: "Agent",
|
|
event_description: str,
|
|
event_type: str = "feed"
|
|
) -> str:
|
|
"""
|
|
Generate an AI reaction for an agent based on an event.
|
|
|
|
Args:
|
|
agent: The Agent model instance
|
|
event_description: Description of what happened (e.g., "User X gave you food")
|
|
event_type: Type of event for mock mode categorization
|
|
|
|
Returns:
|
|
A first-person verbal response from the agent
|
|
"""
|
|
if self._mock_mode:
|
|
return self._get_mock_response(event_type)
|
|
|
|
try:
|
|
system_prompt = (
|
|
f"You are {agent.name}. "
|
|
f"Personality: {agent.personality}. "
|
|
f"Current Status: HP={agent.hp}, Energy={agent.energy}. "
|
|
f"You live on a survival island. "
|
|
f"React to the following event briefly (under 20 words). "
|
|
f"Respond in first person, as if speaking out loud."
|
|
)
|
|
|
|
# Build kwargs for acompletion
|
|
kwargs = {
|
|
"model": self._model,
|
|
"messages": [
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": event_description}
|
|
],
|
|
"max_tokens": 50,
|
|
"temperature": 0.8,
|
|
}
|
|
if self._api_base:
|
|
kwargs["api_base"] = self._api_base
|
|
if self._api_key and not self._api_key_header:
|
|
# Only pass api_key if not using custom header
|
|
kwargs["api_key"] = self._api_key
|
|
if self._extra_headers:
|
|
kwargs["extra_headers"] = self._extra_headers
|
|
|
|
response = await self._acompletion(**kwargs)
|
|
|
|
return response.choices[0].message.content.strip()
|
|
|
|
except Exception as e:
|
|
logger.error(f"LLM API error: {e}")
|
|
return self._get_mock_response(event_type)
|
|
|
|
async def generate_idle_chat(
|
|
self,
|
|
agent: "Agent",
|
|
weather: str = "Sunny",
|
|
time_of_day: str = "day"
|
|
) -> str:
|
|
"""
|
|
Generate idle chatter for an agent based on current conditions.
|
|
|
|
Args:
|
|
agent: The Agent model instance
|
|
weather: Current weather condition
|
|
time_of_day: Current time of day (dawn/day/dusk/night)
|
|
|
|
Returns:
|
|
A spontaneous thought or comment from the agent
|
|
"""
|
|
# Determine event type for mock responses
|
|
if agent.energy <= 20:
|
|
event_type = "idle_starving"
|
|
elif weather.lower() in ["rainy", "stormy"]:
|
|
event_type = "idle_rainy"
|
|
else:
|
|
event_type = "idle_sunny"
|
|
|
|
if self._mock_mode:
|
|
return self._get_mock_response(event_type)
|
|
|
|
try:
|
|
system_prompt = (
|
|
f"You are {agent.name}. "
|
|
f"Personality: {agent.personality}. "
|
|
f"Current Status: HP={agent.hp}, Energy={agent.energy}. "
|
|
f"You are stranded on a survival island. "
|
|
f"It is currently {time_of_day} and the weather is {weather}. "
|
|
f"Say something brief (under 15 words) about your situation or thoughts. "
|
|
f"Speak naturally, as if talking to yourself or nearby survivors."
|
|
)
|
|
|
|
# Build kwargs for acompletion
|
|
kwargs = {
|
|
"model": self._model,
|
|
"messages": [
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": "What are you thinking right now?"}
|
|
],
|
|
"max_tokens": 40,
|
|
"temperature": 0.9,
|
|
}
|
|
if self._api_base:
|
|
kwargs["api_base"] = self._api_base
|
|
if self._api_key and not self._api_key_header:
|
|
# Only pass api_key if not using custom header
|
|
kwargs["api_key"] = self._api_key
|
|
if self._extra_headers:
|
|
kwargs["extra_headers"] = self._extra_headers
|
|
|
|
response = await self._acompletion(**kwargs)
|
|
|
|
return response.choices[0].message.content.strip()
|
|
|
|
except Exception as e:
|
|
logger.error(f"LLM API error for idle chat: {e}")
|
|
return self._get_mock_response(event_type)
|
|
|
|
async def generate_conversation_response(
|
|
self,
|
|
agent_name: str,
|
|
agent_personality: str,
|
|
agent_mood: int,
|
|
username: str,
|
|
topic: str = "just chatting"
|
|
) -> str:
|
|
"""
|
|
Generate a conversation response when a user talks to an agent.
|
|
|
|
Args:
|
|
agent_name: Name of the agent
|
|
agent_personality: Agent's personality trait
|
|
agent_mood: Agent's current mood (0-100)
|
|
username: Name of the user talking to the agent
|
|
topic: Topic of conversation
|
|
|
|
Returns:
|
|
Agent's response to the user
|
|
"""
|
|
if self._mock_mode:
|
|
mood_state = "happy" if agent_mood >= 70 else "neutral" if agent_mood >= 40 else "sad"
|
|
responses = {
|
|
"happy": [
|
|
f"Hey {username}! Great to see a friendly face!",
|
|
f"Oh, you want to chat? I'm in a good mood today!",
|
|
f"Nice of you to talk to me, {username}!",
|
|
],
|
|
"neutral": [
|
|
f"Oh, hi {username}. What's on your mind?",
|
|
f"Sure, I can chat for a bit.",
|
|
f"What do you want to talk about?",
|
|
],
|
|
"sad": [
|
|
f"*sighs* Oh... hey {username}...",
|
|
f"I'm not really in the mood, but... okay.",
|
|
f"What is it, {username}?",
|
|
]
|
|
}
|
|
return random.choice(responses.get(mood_state, responses["neutral"]))
|
|
|
|
try:
|
|
mood_desc = "happy and energetic" if agent_mood >= 70 else \
|
|
"calm and neutral" if agent_mood >= 40 else \
|
|
"a bit down" if agent_mood >= 20 else "anxious and worried"
|
|
|
|
system_prompt = (
|
|
f"You are {agent_name}, a survivor on a deserted island. "
|
|
f"Personality: {agent_personality}. "
|
|
f"Current mood: {mood_desc} (mood level: {agent_mood}/100). "
|
|
f"A viewer named {username} wants to chat with you. "
|
|
f"Respond naturally in character (under 30 words). "
|
|
f"Be conversational and show your personality."
|
|
)
|
|
|
|
user_msg = f"{username} says: {topic}" if topic != "just chatting" else \
|
|
f"{username} wants to chat with you."
|
|
|
|
kwargs = {
|
|
"model": self._model,
|
|
"messages": [
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": user_msg}
|
|
],
|
|
"max_tokens": 80,
|
|
"temperature": 0.85,
|
|
}
|
|
if self._api_base:
|
|
kwargs["api_base"] = self._api_base
|
|
if self._api_key and not self._api_key_header:
|
|
kwargs["api_key"] = self._api_key
|
|
if self._extra_headers:
|
|
kwargs["extra_headers"] = self._extra_headers
|
|
|
|
response = await self._acompletion(**kwargs)
|
|
return response.choices[0].message.content.strip()
|
|
|
|
except Exception as e:
|
|
logger.error(f"LLM API error for conversation: {e}")
|
|
return f"*nods at {username}* Hey there."
|
|
|
|
async def generate_social_interaction(
|
|
self,
|
|
initiator_name: str,
|
|
target_name: str,
|
|
interaction_type: str,
|
|
relationship_type: str,
|
|
weather: str = "Sunny",
|
|
time_of_day: str = "day"
|
|
) -> str:
|
|
"""
|
|
Generate dialogue for social interaction between two agents.
|
|
|
|
Args:
|
|
initiator_name: Name of the agent initiating interaction
|
|
target_name: Name of the target agent
|
|
interaction_type: Type of interaction (chat, share_food, help, argue, comfort)
|
|
relationship_type: Current relationship (stranger, acquaintance, friend, etc.)
|
|
weather: Current weather
|
|
time_of_day: Current time of day
|
|
|
|
Returns:
|
|
A brief dialogue exchange between the two agents
|
|
"""
|
|
if self._mock_mode:
|
|
dialogues = {
|
|
"chat": [
|
|
f"{initiator_name}: Hey {target_name}, how are you holding up?\n{target_name}: Could be better, but I'm managing.",
|
|
f"{initiator_name}: Nice weather today, huh?\n{target_name}: Yeah, at least something's going right.",
|
|
],
|
|
"share_food": [
|
|
f"{initiator_name}: Here, take some of my food.\n{target_name}: Really? Thanks, I appreciate it!",
|
|
f"{initiator_name}: You look hungry. Have some of this.\n{target_name}: You're a lifesaver!",
|
|
],
|
|
"help": [
|
|
f"{initiator_name}: Need a hand with that?\n{target_name}: Yes, thank you so much!",
|
|
f"{initiator_name}: Let me help you out.\n{target_name}: I owe you one!",
|
|
],
|
|
"argue": [
|
|
f"{initiator_name}: This is all your fault!\n{target_name}: My fault? You're the one who-",
|
|
f"{initiator_name}: I can't believe you did that!\n{target_name}: Just leave me alone!",
|
|
],
|
|
"comfort": [
|
|
f"{initiator_name}: Hey, are you okay?\n{target_name}: *sniff* I'll be fine... thanks for asking.",
|
|
f"{initiator_name}: Don't worry, we'll get through this.\n{target_name}: I hope you're right...",
|
|
]
|
|
}
|
|
return random.choice(dialogues.get(interaction_type, dialogues["chat"]))
|
|
|
|
try:
|
|
relationship_desc = {
|
|
"stranger": "barely know each other",
|
|
"acquaintance": "are getting to know each other",
|
|
"friend": "are friends",
|
|
"close_friend": "are close friends who trust each other",
|
|
"rival": "have tensions between them"
|
|
}.get(relationship_type, "are acquaintances")
|
|
|
|
interaction_desc = {
|
|
"chat": "having a casual conversation",
|
|
"share_food": "sharing food with",
|
|
"help": "helping with a task",
|
|
"argue": "having a disagreement with",
|
|
"comfort": "comforting"
|
|
}.get(interaction_type, "talking to")
|
|
|
|
system_prompt = (
|
|
f"You are writing dialogue for two survivors on a deserted island. "
|
|
f"{initiator_name} and {target_name} {relationship_desc}. "
|
|
f"It is {time_of_day} and the weather is {weather}. "
|
|
f"{initiator_name} is {interaction_desc} {target_name}. "
|
|
f"Write a brief, natural dialogue exchange (2-3 lines total). "
|
|
f"Format: '{initiator_name}: [line]\\n{target_name}: [response]'"
|
|
)
|
|
|
|
kwargs = {
|
|
"model": self._model,
|
|
"messages": [
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": f"Write a {interaction_type} dialogue between {initiator_name} and {target_name}."}
|
|
],
|
|
"max_tokens": 100,
|
|
"temperature": 0.9,
|
|
}
|
|
if self._api_base:
|
|
kwargs["api_base"] = self._api_base
|
|
if self._api_key and not self._api_key_header:
|
|
kwargs["api_key"] = self._api_key
|
|
if self._extra_headers:
|
|
kwargs["extra_headers"] = self._extra_headers
|
|
|
|
response = await self._acompletion(**kwargs)
|
|
return response.choices[0].message.content.strip()
|
|
|
|
except Exception as e:
|
|
logger.error(f"LLM API error for social interaction: {e}")
|
|
return f"{initiator_name}: ...\n{target_name}: ..."
|
|
|
|
|
|
# Global instance for easy import
|
|
llm_service = LLMService()
|