Files
the-island/backend/app/llm.py
empty adfd197451 fix: add missing self parameter to generate_social_interaction
The method was missing 'self' as first parameter, causing
"got multiple values for argument 'initiator_name'" error.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-02 02:22:25 +08:00

643 lines
26 KiB
Python

"""
LLM Service - Agent Brain Module.
Provides AI-powered responses for agents using LiteLLM (supports multiple providers).
Supported providers (via environment variables):
- OpenAI: OPENAI_API_KEY → model="gpt-3.5-turbo" or "gpt-4"
- Anthropic: ANTHROPIC_API_KEY → model="claude-3-haiku-20240307" or "claude-3-sonnet-20240229"
- Google: GEMINI_API_KEY → model="gemini/gemini-pro"
- Azure OpenAI: AZURE_API_KEY + AZURE_API_BASE → model="azure/<deployment-name>"
- OpenRouter: OPENROUTER_API_KEY → model="openrouter/<model>"
- Ollama (local): OLLAMA_API_BASE → model="ollama/llama2"
- Custom/Self-hosted: LLM_API_KEY + LLM_API_BASE → any OpenAI-compatible endpoint
- And 100+ more providers...
Configuration:
- LLM_MODEL: Model to use (default: gpt-3.5-turbo)
- LLM_API_BASE: Custom API base URL (for self-hosted or proxy services)
- LLM_API_KEY: Generic API key (used with LLM_API_BASE)
- LLM_API_KEY_HEADER: Custom header name for API key (default: none, uses provider default)
- LLM_MOCK_MODE: Set to "true" to force mock mode
"""
import logging
import os
import random
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from .models import Agent
from .memory_service import MemoryService
from .memory_service import memory_service
logger = logging.getLogger(__name__)
# Mock responses for development without API key
MOCK_REACTIONS = {
"feed": [
"Oh! Finally some food! Thank you stranger!",
"Mmm, that's delicious! I was starving!",
"You're too kind! My energy is back!",
"Food! Glorious food! I love you!",
],
"idle_sunny": [
"What a beautiful day on this island...",
"The sun feels nice, but I'm getting hungry.",
"I wonder if rescue will ever come...",
"At least the weather is good today.",
],
"idle_rainy": [
"This rain is so depressing...",
"I hope the storm passes soon.",
"Getting wet and cold out here...",
"Rain again? Just my luck.",
],
"idle_starving": [
"I'm so hungry... I can barely stand...",
"Someone please... I need food...",
"My stomach is eating itself...",
"Is this how it ends? Starving on a beach?",
],
"gratitude_arrogant": [
"Finally! A worthy tribute! {user}, you understand greatness!",
"About time someone recognized my value! Thanks, {user}!",
"Hmph, {user} knows quality when they see it. Much appreciated!",
"A gift for ME? Well, obviously. Thank you, {user}!",
],
"gratitude_humble": [
"Oh my gosh, {user}! You're too kind! Thank you so much!",
"Wow, {user}, I don't deserve this! You're amazing!",
"*tears up* {user}... this means the world to me!",
"Thank you, thank you {user}! You're the best!",
],
"gratitude_neutral": [
"Hey, thanks {user}! That's really generous of you!",
"Wow, {user}! Thank you so much for the support!",
"Appreciate it, {user}! You're awesome!",
"{user}, you're a legend! Thank you!",
],
}
# Default model configuration
DEFAULT_MODEL = "gpt-3.5-turbo"
class LLMService:
"""
Service for generating AI-powered agent reactions using LiteLLM.
Supports multiple LLM providers through a unified interface.
Falls back to mock responses if no API key is configured.
"""
def __init__(self) -> None:
"""Initialize the LLM service with LiteLLM or mock mode."""
self._model = os.environ.get("LLM_MODEL", DEFAULT_MODEL)
self._api_base = os.environ.get("LLM_API_BASE") # Custom base URL
self._api_key = os.environ.get("LLM_API_KEY") # Generic API key
self._api_key_header = os.environ.get("LLM_API_KEY_HEADER") # Custom header name
self._mock_mode = os.environ.get("LLM_MOCK_MODE", "").lower() == "true"
self._acompletion = None
self._extra_headers = {}
# Build extra headers if custom API key header is specified
if self._api_key_header and self._api_key:
self._extra_headers[self._api_key_header] = self._api_key
logger.info(f"Using custom API key header: {self._api_key_header}")
# LiteLLM requires provider-specific API key env var to pass validation
# Set it to satisfy the check (actual auth uses extra_headers)
if self._model.startswith("anthropic/"):
os.environ.setdefault("ANTHROPIC_API_KEY", self._api_key)
elif self._model.startswith("openai/"):
os.environ.setdefault("OPENAI_API_KEY", self._api_key)
if self._mock_mode:
logger.info("LLMService running in MOCK mode (forced by LLM_MOCK_MODE)")
return
# Check for any supported API key (order matters for provider detection)
api_keys = {
"OPENAI_API_KEY": "OpenAI",
"ANTHROPIC_API_KEY": "Anthropic",
"GEMINI_API_KEY": "Google Gemini",
"AZURE_API_KEY": "Azure OpenAI",
"AZURE_API_BASE": "Azure OpenAI",
"OPENROUTER_API_KEY": "OpenRouter",
"COHERE_API_KEY": "Cohere",
"HUGGINGFACE_API_KEY": "HuggingFace",
"OLLAMA_API_BASE": "Ollama (local)",
"LLM_API_KEY": "Custom (with LLM_API_BASE)",
"LLM_API_BASE": "Custom endpoint",
}
found_provider = None
for key, provider in api_keys.items():
if os.environ.get(key):
found_provider = provider
break
if not found_provider:
logger.warning(
"No LLM API key found in environment. "
"LLMService running in MOCK mode - using predefined responses. "
f"Supported keys: {', '.join(api_keys.keys())}"
)
self._mock_mode = True
return
try:
from litellm import acompletion
self._acompletion = acompletion
# Log configuration details
config_info = f"provider: {found_provider}, model: {self._model}"
if self._api_base:
config_info += f", api_base: {self._api_base}"
logger.info(f"LLMService initialized with LiteLLM ({config_info})")
except ImportError:
logger.error("litellm package not installed. Running in MOCK mode.")
self._mock_mode = True
except Exception as e:
logger.error(f"Failed to initialize LiteLLM: {e}. Running in MOCK mode.")
self._mock_mode = True
@property
def is_mock_mode(self) -> bool:
"""Check if service is running in mock mode."""
return self._mock_mode
@property
def model(self) -> str:
"""Get the current model name."""
return self._model
@property
def api_base(self) -> str | None:
"""Get the custom API base URL if configured."""
return self._api_base
def _get_mock_response(self, event_type: str = "feed") -> str:
"""Get a random mock response for testing without API."""
responses = MOCK_REACTIONS.get(event_type, MOCK_REACTIONS["feed"])
return random.choice(responses)
async def generate_reaction(
self,
agent: "Agent",
event_description: str,
event_type: str = "feed"
) -> str:
"""
Generate an AI reaction for an agent based on an event.
Args:
agent: The Agent model instance
event_description: Description of what happened (e.g., "User X gave you food")
event_type: Type of event for mock mode categorization
Returns:
A first-person verbal response from the agent
"""
if self._mock_mode:
return self._get_mock_response(event_type)
try:
# Retrieve relevant memories
memories = await memory_service.get_relevant_memories(agent.id, event_description)
memory_context = "\n".join(memories) if memories else "No relevant memories."
system_prompt = (
f"You are {agent.name}. "
f"Personality: {agent.personality}. "
f"Current Status: HP={agent.hp}, Energy={agent.energy}. "
f"Shelter Status: {'Under shelter (safe from weather)' if agent.is_sheltered else 'Exposed (vulnerable to weather)'}. "
f"You are a land creature on a survival island. You have a natural instinct to stay on the dry sand and avoid the deep ocean. "
f"Relevant Memories:\n{memory_context}\n"
f"React to the following event briefly (under 20 words). "
f"Respond in first person, as if speaking out loud."
)
# Build kwargs for acompletion
kwargs = {
"model": self._model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": event_description}
],
"max_tokens": 50,
"temperature": 0.8,
}
if self._api_base:
kwargs["api_base"] = self._api_base
if self._api_key and not self._api_key_header:
# Only pass api_key if not using custom header
kwargs["api_key"] = self._api_key
if self._extra_headers:
kwargs["extra_headers"] = self._extra_headers
response = await self._acompletion(**kwargs)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"LLM API error: {e}")
return self._get_mock_response(event_type)
async def generate_idle_chat(
self,
agent: "Agent",
weather: str = "Sunny",
time_of_day: str = "day"
) -> str:
"""
Generate idle chatter for an agent based on current conditions.
Args:
agent: The Agent model instance
weather: Current weather condition
time_of_day: Current time of day (dawn/day/dusk/night)
Returns:
A spontaneous thought or comment from the agent
"""
# Determine event type for mock responses
if agent.energy <= 20:
event_type = "idle_starving"
elif weather.lower() in ["rainy", "stormy"]:
event_type = "idle_rainy"
else:
event_type = "idle_sunny"
if self._mock_mode:
return self._get_mock_response(event_type)
try:
system_prompt = (
f"You are {agent.name}. "
f"Personality: {agent.personality}. "
f"Current Status: HP={agent.hp}, Energy={agent.energy}. "
f"Shelter Status: {'Under shelter (protected)' if agent.is_sheltered else 'Exposed to elements'}. "
f"You are a land creature stranded on a survival island beach. You feel safer on dry land than near the waves. "
f"It is currently {time_of_day} and the weather is {weather}. "
f"Say something brief (under 15 words) about your situation or thoughts. "
f"Speak naturally, as if talking to yourself or nearby survivors."
)
# Build kwargs for acompletion
kwargs = {
"model": self._model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "What are you thinking right now?"}
],
"max_tokens": 40,
"temperature": 0.9,
}
if self._api_base:
kwargs["api_base"] = self._api_base
if self._api_key and not self._api_key_header:
# Only pass api_key if not using custom header
kwargs["api_key"] = self._api_key
if self._extra_headers:
kwargs["extra_headers"] = self._extra_headers
response = await self._acompletion(**kwargs)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"LLM API error for idle chat: {e}")
return self._get_mock_response(event_type)
async def generate_conversation_response(
self,
agent_name: str,
agent_personality: str,
agent_mood: int,
username: str,
topic: str = "just chatting"
) -> str:
"""
Generate a conversation response when a user talks to an agent.
Args:
agent_name: Name of the agent
agent_personality: Agent's personality trait
agent_mood: Agent's current mood (0-100)
username: Name of the user talking to the agent
topic: Topic of conversation
Returns:
Agent's response to the user
"""
if self._mock_mode:
mood_state = "happy" if agent_mood >= 70 else "neutral" if agent_mood >= 40 else "sad"
responses = {
"happy": [
f"Hey {username}! Great to see a friendly face!",
f"Oh, you want to chat? I'm in a good mood today!",
f"Nice of you to talk to me, {username}!",
],
"neutral": [
f"Oh, hi {username}. What's on your mind?",
f"Sure, I can chat for a bit.",
f"What do you want to talk about?",
],
"sad": [
f"*sighs* Oh... hey {username}...",
f"I'm not really in the mood, but... okay.",
f"What is it, {username}?",
]
}
return random.choice(responses.get(mood_state, responses["neutral"]))
try:
mood_desc = "happy and energetic" if agent_mood >= 70 else \
"calm and neutral" if agent_mood >= 40 else \
"a bit down" if agent_mood >= 20 else "anxious and worried"
# Retrieve relevant memories
memories = await memory_service.get_relevant_memories(agent.id, topic)
memory_context = "\n".join(memories) if memories else "No relevant memories."
system_prompt = (
f"You are {agent_name}, a survivor on a deserted island. "
f"Personality: {agent_personality}. "
f"Current mood: {mood_desc} (mood level: {agent_mood}/100). "
f"Relevant Memories:\n{memory_context}\n"
f"A viewer named {username} wants to chat with you. "
f"Respond naturally in character (under 30 words). "
f"Be conversational and show your personality."
)
user_msg = f"{username} says: {topic}" if topic != "just chatting" else \
f"{username} wants to chat with you."
kwargs = {
"model": self._model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_msg}
],
"max_tokens": 80,
"temperature": 0.85,
}
if self._api_base:
kwargs["api_base"] = self._api_base
if self._api_key and not self._api_key_header:
kwargs["api_key"] = self._api_key
if self._extra_headers:
kwargs["extra_headers"] = self._extra_headers
response = await self._acompletion(**kwargs)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"LLM API error for conversation: {e}")
return f"*nods at {username}* Hey there."
async def generate_social_interaction(
self,
initiator_name: str,
target_name: str,
interaction_type: str,
relationship_type: str,
weather: str = "Sunny",
time_of_day: str = "day",
previous_dialogue: str = None
) -> str:
"""
Generate dialogue for social interaction between two agents.
Args:
initiator_name: Name of the agent initiating interaction
target_name: Name of the target agent
interaction_type: Type of interaction (chat, share_food, help, argue, comfort)
relationship_type: Current relationship (stranger, acquaintance, friend, etc.)
weather: Current weather
time_of_day: Current time of day
Returns:
A brief dialogue exchange between the two agents
"""
if self._mock_mode:
dialogues = {
"chat": [
f"{initiator_name}: Hey {target_name}, how are you holding up?\n{target_name}: Could be better, but I'm managing.",
f"{initiator_name}: Nice weather today, huh?\n{target_name}: Yeah, at least something's going right.",
],
"share_food": [
f"{initiator_name}: Here, take some of my food.\n{target_name}: Really? Thanks, I appreciate it!",
f"{initiator_name}: You look hungry. Have some of this.\n{target_name}: You're a lifesaver!",
],
"help": [
f"{initiator_name}: Need a hand with that?\n{target_name}: Yes, thank you so much!",
f"{initiator_name}: Let me help you out.\n{target_name}: I owe you one!",
],
"argue": [
f"{initiator_name}: This is all your fault!\n{target_name}: My fault? You're the one who-",
f"{initiator_name}: I can't believe you did that!\n{target_name}: Just leave me alone!",
],
"comfort": [
f"{initiator_name}: Hey, are you okay?\n{target_name}: *sniff* I'll be fine... thanks for asking.",
f"{initiator_name}: Don't worry, we'll get through this.\n{target_name}: I hope you're right...",
]
}
return random.choice(dialogues.get(interaction_type, dialogues["chat"]))
try:
relationship_desc = {
"stranger": "barely know each other",
"acquaintance": "are getting to know each other",
"friend": "are friends",
"close_friend": "are close friends who trust each other",
"rival": "have tensions between them"
}.get(relationship_type, "are acquaintances")
interaction_desc = {
"chat": "having a casual conversation",
"share_food": "sharing food with",
"help": "helping with a task",
"argue": "having a disagreement with",
"comfort": "comforting"
}.get(interaction_type, "talking to")
system_prompt = (
f"You are writing dialogue for two survivors on a deserted island. "
f"{initiator_name} and {target_name} {relationship_desc}. "
f"It is {time_of_day} and the weather is {weather}. "
f"{initiator_name} is {interaction_desc} {target_name}. "
)
if previous_dialogue:
system_prompt += (
f"\nCONTEXT: {target_name} just said: '{previous_dialogue}'\n"
f"Write a response from {initiator_name} to {target_name}. "
f"Format: '{initiator_name}: [response]'"
)
else:
system_prompt += (
f"\nWrite a brief opening dialogue exchange (2-3 lines total). "
f"Format: '{initiator_name}: [line]\\n{target_name}: [response]'"
)
kwargs = {
"model": self._model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Write a {interaction_type} dialogue between {initiator_name} and {target_name}."}
],
"max_tokens": 100,
"temperature": 0.9,
}
if self._api_base:
kwargs["api_base"] = self._api_base
if self._api_key and not self._api_key_header:
kwargs["api_key"] = self._api_key
if self._extra_headers:
kwargs["extra_headers"] = self._extra_headers
response = await self._acompletion(**kwargs)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"LLM API error for social interaction: {e}")
return f"{initiator_name}: ...\n{target_name}: ..."
async def generate_story(
self,
storyteller_name: str,
topic: str = "ghost_story"
) -> str:
"""
Generate a short story for the campfire.
"""
if self._mock_mode:
stories = [
"Once upon a time, a ship crashed here...",
"The elders say this island is haunted...",
"I saw a strange light in the forest yesterday..."
]
return random.choice(stories)
try:
system_prompt = (
f"You are {storyteller_name}, a survivor telling a story at a campfire. "
f"Topic: {topic}. "
f"Keep it short (2-3 sentences), mysterious, and atmospheric."
)
kwargs = {
"model": self._model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Tell us a story."}
],
"max_tokens": 100,
"temperature": 1.0,
}
if self._api_base:
kwargs["api_base"] = self._api_base
if self._api_key and not self._api_key_header:
kwargs["api_key"] = self._api_key
if self._extra_headers:
kwargs["extra_headers"] = self._extra_headers
response = await self._acompletion(**kwargs)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"LLM API error for story: {e}")
return "It was a dark and stormy night..."
async def generate_gratitude(
self,
user: str,
amount: int,
agent_name: str = "Survivor",
agent_personality: str = "friendly",
gift_name: str = "bits"
) -> str:
"""
Generate a special gratitude response for donations/gifts.
Args:
user: Name of the user who gave the gift
amount: Amount of the gift
agent_name: Name of the agent (optional)
agent_personality: Personality of the agent (optional)
gift_name: Type of gift (bits, subscription, etc.)
Returns:
An excited, grateful response from the agent
"""
personality = agent_personality.lower() if agent_personality else "friendly"
if self._mock_mode:
if "arrogant" in personality or "proud" in personality:
responses = MOCK_REACTIONS.get("gratitude_arrogant", [])
elif "humble" in personality or "shy" in personality or "kind" in personality:
responses = MOCK_REACTIONS.get("gratitude_humble", [])
else:
responses = MOCK_REACTIONS.get("gratitude_neutral", [])
if responses:
return random.choice(responses).format(user=user, amount=amount)
return f"Thank you so much, {user}! You're amazing!"
try:
# Customize tone based on personality
if "arrogant" in personality or "proud" in personality:
tone_instruction = (
"You are somewhat arrogant but still grateful. "
"React with confident excitement, like 'Finally, a worthy tribute!' "
"but still thank them."
)
elif "humble" in personality or "shy" in personality:
tone_instruction = (
"You are humble and easily moved. "
"React with overwhelming gratitude, maybe even get teary-eyed."
)
else:
tone_instruction = (
"React with genuine excitement and gratitude."
)
system_prompt = (
f"You are {agent_name}, a survivor on a deserted island. "
f"Personality: {personality if personality else 'friendly'}. "
f"A wealthy patron named {user} just gave you {amount} {gift_name}! "
f"{tone_instruction} "
f"Respond with extreme excitement and gratitude (max 15 words). "
f"Keep it fun and energetic!"
)
kwargs = {
"model": self._model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"{user} just gave you {amount} {gift_name}! React!"}
],
"max_tokens": 40,
"temperature": 0.95,
}
if self._api_base:
kwargs["api_base"] = self._api_base
if self._api_key and not self._api_key_header:
kwargs["api_key"] = self._api_key
if self._extra_headers:
kwargs["extra_headers"] = self._extra_headers
response = await self._acompletion(**kwargs)
return response.choices[0].message.content.strip()
except Exception as e:
logger.error(f"LLM API error for gratitude: {e}")
return f"Wow, thank you so much {user}! You're amazing!"
# Global instance for easy import
llm_service = LLMService()