移除冗余的逻辑
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
Standard Video Generation Pipeline
|
||||
|
||||
Standard workflow for generating short videos from topic or fixed script.
|
||||
This is the default pipeline that replicates the original VideoGeneratorService logic.
|
||||
This is the default pipeline for general-purpose video generation.
|
||||
"""
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
@@ -13,9 +13,6 @@ from pixelle_video.services.llm_service import LLMService
|
||||
from pixelle_video.services.tts_service import TTSService
|
||||
from pixelle_video.services.image import ImageService
|
||||
from pixelle_video.services.video import VideoService
|
||||
from pixelle_video.services.narration_generator import NarrationGeneratorService
|
||||
from pixelle_video.services.image_prompt_generator import ImagePromptGeneratorService
|
||||
from pixelle_video.services.title_generator import TitleGeneratorService
|
||||
from pixelle_video.services.frame_processor import FrameProcessor
|
||||
from pixelle_video.pipelines.standard import StandardPipeline
|
||||
from pixelle_video.pipelines.custom import CustomPipeline
|
||||
@@ -70,13 +67,6 @@ class PixelleVideoCore:
|
||||
self.tts: Optional[TTSService] = None
|
||||
self.image: Optional[ImageService] = None
|
||||
self.video: Optional[VideoService] = None
|
||||
|
||||
# Content generation services
|
||||
self.narration_generator: Optional[NarrationGeneratorService] = None
|
||||
self.image_prompt_generator: Optional[ImagePromptGeneratorService] = None
|
||||
self.title_generator: Optional[TitleGeneratorService] = None
|
||||
|
||||
# Frame processing services
|
||||
self.frame_processor: Optional[FrameProcessor] = None
|
||||
|
||||
# Video generation pipelines (dictionary of pipeline_name -> pipeline_instance)
|
||||
@@ -105,23 +95,16 @@ class PixelleVideoCore:
|
||||
self.tts = TTSService(self.config)
|
||||
self.image = ImageService(self.config)
|
||||
self.video = VideoService()
|
||||
|
||||
# 2. Initialize content generation services
|
||||
self.narration_generator = NarrationGeneratorService(self)
|
||||
self.image_prompt_generator = ImagePromptGeneratorService(self)
|
||||
self.title_generator = TitleGeneratorService(self)
|
||||
|
||||
# 3. Initialize frame processing services
|
||||
self.frame_processor = FrameProcessor(self)
|
||||
|
||||
# 4. Register video generation pipelines
|
||||
# 2. Register video generation pipelines
|
||||
self.pipelines = {
|
||||
"standard": StandardPipeline(self),
|
||||
"custom": CustomPipeline(self),
|
||||
}
|
||||
logger.info(f"📹 Registered pipelines: {', '.join(self.pipelines.keys())}")
|
||||
|
||||
# 5. Set default pipeline callable (for backward compatibility)
|
||||
# 3. Set default pipeline callable (for backward compatibility)
|
||||
self.generate_video = self._create_generate_video_wrapper()
|
||||
|
||||
self._initialized = True
|
||||
|
||||
@@ -3,18 +3,13 @@ Pixelle-Video Services
|
||||
|
||||
Core services providing atomic capabilities.
|
||||
|
||||
Core Services (Active):
|
||||
Services:
|
||||
- LLMService: LLM text generation
|
||||
- TTSService: Text-to-speech
|
||||
- ImageService: Image generation
|
||||
- VideoService: Video processing
|
||||
|
||||
Legacy Services (Kept for backward compatibility):
|
||||
- NarrationGeneratorService: Use pipelines + utils.content_generators instead
|
||||
- ImagePromptGeneratorService: Use pipelines + utils.content_generators instead
|
||||
- TitleGeneratorService: Use pipelines + utils.content_generators instead
|
||||
- FrameProcessor: Use pipelines instead
|
||||
- VideoGeneratorService: Use pipelines.StandardPipeline instead
|
||||
- FrameProcessor: Frame processing orchestrator
|
||||
- ComfyBaseService: Base class for ComfyUI-based services
|
||||
"""
|
||||
|
||||
from pixelle_video.services.comfy_base_service import ComfyBaseService
|
||||
@@ -22,13 +17,7 @@ from pixelle_video.services.llm_service import LLMService
|
||||
from pixelle_video.services.tts_service import TTSService
|
||||
from pixelle_video.services.image import ImageService
|
||||
from pixelle_video.services.video import VideoService
|
||||
|
||||
# Legacy services (kept for backward compatibility)
|
||||
from pixelle_video.services.narration_generator import NarrationGeneratorService
|
||||
from pixelle_video.services.image_prompt_generator import ImagePromptGeneratorService
|
||||
from pixelle_video.services.title_generator import TitleGeneratorService
|
||||
from pixelle_video.services.frame_processor import FrameProcessor
|
||||
from pixelle_video.services.video_generator import VideoGeneratorService
|
||||
|
||||
__all__ = [
|
||||
"ComfyBaseService",
|
||||
@@ -36,11 +25,6 @@ __all__ = [
|
||||
"TTSService",
|
||||
"ImageService",
|
||||
"VideoService",
|
||||
# Legacy (backward compatibility)
|
||||
"NarrationGeneratorService",
|
||||
"ImagePromptGeneratorService",
|
||||
"TitleGeneratorService",
|
||||
"FrameProcessor",
|
||||
"VideoGeneratorService",
|
||||
]
|
||||
|
||||
|
||||
@@ -1,218 +0,0 @@
|
||||
"""
|
||||
Image prompt generation service
|
||||
"""
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import List, Optional, Callable
|
||||
|
||||
from loguru import logger
|
||||
|
||||
from pixelle_video.models.storyboard import StoryboardConfig
|
||||
from pixelle_video.prompts import build_image_prompt_prompt
|
||||
|
||||
|
||||
class ImagePromptGeneratorService:
|
||||
"""Image prompt generation service"""
|
||||
|
||||
def __init__(self, pixelle_video_core):
|
||||
"""
|
||||
Initialize
|
||||
|
||||
Args:
|
||||
pixelle_video_core: PixelleVideoCore instance
|
||||
"""
|
||||
self.core = pixelle_video_core
|
||||
|
||||
async def generate_image_prompts(
|
||||
self,
|
||||
narrations: List[str],
|
||||
config: StoryboardConfig,
|
||||
batch_size: int = 10,
|
||||
max_retries: int = 3,
|
||||
progress_callback: Optional[Callable] = None
|
||||
) -> List[str]:
|
||||
"""
|
||||
Generate image prompts based on narrations (with batching and retry)
|
||||
|
||||
Args:
|
||||
narrations: List of narrations
|
||||
config: Storyboard configuration
|
||||
batch_size: Max narrations per batch (default: 10)
|
||||
max_retries: Max retry attempts per batch (default: 3)
|
||||
progress_callback: Optional callback(completed, total, message) for progress updates
|
||||
|
||||
Returns:
|
||||
List of image prompts with prompt_prefix applied (from config)
|
||||
|
||||
Raises:
|
||||
ValueError: If batch fails after max_retries
|
||||
json.JSONDecodeError: If unable to parse JSON
|
||||
"""
|
||||
logger.info(f"Generating image prompts for {len(narrations)} narrations (batch_size={batch_size}, max_retries={max_retries})")
|
||||
|
||||
# Split narrations into batches
|
||||
batches = [narrations[i:i + batch_size] for i in range(0, len(narrations), batch_size)]
|
||||
logger.info(f"Split into {len(batches)} batches")
|
||||
|
||||
all_base_prompts = []
|
||||
|
||||
# Process each batch
|
||||
for batch_idx, batch_narrations in enumerate(batches, 1):
|
||||
logger.info(f"Processing batch {batch_idx}/{len(batches)} ({len(batch_narrations)} narrations)")
|
||||
|
||||
# Retry logic for this batch
|
||||
for attempt in range(1, max_retries + 1):
|
||||
try:
|
||||
# Generate prompts for this batch
|
||||
batch_prompts = await self._generate_batch_prompts(
|
||||
batch_narrations,
|
||||
config,
|
||||
batch_idx,
|
||||
attempt
|
||||
)
|
||||
|
||||
# Validate count
|
||||
if len(batch_prompts) != len(batch_narrations):
|
||||
error_msg = (
|
||||
f"Batch {batch_idx} prompt count mismatch (attempt {attempt}/{max_retries}):\n"
|
||||
f" Expected: {len(batch_narrations)} prompts\n"
|
||||
f" Got: {len(batch_prompts)} prompts\n"
|
||||
f" Difference: {abs(len(batch_prompts) - len(batch_narrations))} "
|
||||
f"{'missing' if len(batch_prompts) < len(batch_narrations) else 'extra'}"
|
||||
)
|
||||
logger.warning(error_msg)
|
||||
|
||||
if attempt < max_retries:
|
||||
logger.info(f"Retrying batch {batch_idx}...")
|
||||
continue
|
||||
else:
|
||||
logger.error(f"Batch {batch_idx} failed after {max_retries} attempts")
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Success!
|
||||
logger.info(f"✅ Batch {batch_idx} completed successfully ({len(batch_prompts)} prompts)")
|
||||
all_base_prompts.extend(batch_prompts)
|
||||
|
||||
# Report progress
|
||||
if progress_callback:
|
||||
progress_callback(
|
||||
len(all_base_prompts),
|
||||
len(narrations),
|
||||
f"Batch {batch_idx}/{len(batches)} completed"
|
||||
)
|
||||
|
||||
break
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Batch {batch_idx} JSON parse error (attempt {attempt}/{max_retries}): {e}")
|
||||
if attempt >= max_retries:
|
||||
raise
|
||||
logger.info(f"Retrying batch {batch_idx}...")
|
||||
|
||||
base_prompts = all_base_prompts
|
||||
logger.info(f"✅ All batches completed. Total prompts: {len(base_prompts)}")
|
||||
|
||||
# 5. Apply prompt prefix to each prompt
|
||||
from pixelle_video.utils.prompt_helper import build_image_prompt
|
||||
|
||||
# Get prompt prefix from config (fix: correct path is comfyui.image.prompt_prefix)
|
||||
image_config = self.core.config.get("comfyui", {}).get("image", {})
|
||||
prompt_prefix = image_config.get("prompt_prefix", "")
|
||||
|
||||
# Apply prefix to each base prompt
|
||||
final_prompts = []
|
||||
for base_prompt in base_prompts:
|
||||
final_prompt = build_image_prompt(base_prompt, prompt_prefix)
|
||||
final_prompts.append(final_prompt)
|
||||
|
||||
logger.info(f"Generated {len(final_prompts)} final image prompts with prefix applied")
|
||||
return final_prompts
|
||||
|
||||
async def _generate_batch_prompts(
|
||||
self,
|
||||
batch_narrations: List[str],
|
||||
config: StoryboardConfig,
|
||||
batch_idx: int,
|
||||
attempt: int
|
||||
) -> List[str]:
|
||||
"""
|
||||
Generate image prompts for a single batch of narrations
|
||||
|
||||
Args:
|
||||
batch_narrations: Batch of narrations
|
||||
config: Storyboard configuration
|
||||
batch_idx: Batch index (for logging)
|
||||
attempt: Attempt number (for logging)
|
||||
|
||||
Returns:
|
||||
List of image prompts for this batch
|
||||
|
||||
Raises:
|
||||
json.JSONDecodeError: If unable to parse JSON
|
||||
KeyError: If response format is invalid
|
||||
"""
|
||||
logger.debug(f"Batch {batch_idx} attempt {attempt}: Generating prompts for {len(batch_narrations)} narrations")
|
||||
|
||||
# 1. Build prompt
|
||||
prompt = build_image_prompt_prompt(
|
||||
narrations=batch_narrations,
|
||||
min_words=config.min_image_prompt_words,
|
||||
max_words=config.max_image_prompt_words
|
||||
)
|
||||
|
||||
# 2. Call LLM
|
||||
response = await self.core.llm(
|
||||
prompt=prompt,
|
||||
temperature=0.7,
|
||||
max_tokens=8192
|
||||
)
|
||||
|
||||
logger.debug(f"Batch {batch_idx} attempt {attempt}: LLM response length: {len(response)} chars")
|
||||
|
||||
# 3. Parse JSON
|
||||
result = self._parse_json(response)
|
||||
|
||||
if "image_prompts" not in result:
|
||||
logger.error("Response missing 'image_prompts' key")
|
||||
raise KeyError("Invalid response format: missing 'image_prompts'")
|
||||
|
||||
return result["image_prompts"]
|
||||
|
||||
def _parse_json(self, text: str) -> dict:
|
||||
"""
|
||||
Parse JSON from text, with fallback to extract JSON from markdown code blocks
|
||||
|
||||
Args:
|
||||
text: Text containing JSON
|
||||
|
||||
Returns:
|
||||
Parsed JSON dict
|
||||
"""
|
||||
# Try direct parsing first
|
||||
try:
|
||||
return json.loads(text)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try to extract JSON from markdown code block
|
||||
json_pattern = r'```(?:json)?\s*([\s\S]+?)\s*```'
|
||||
match = re.search(json_pattern, text, re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(1))
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try to find any JSON object in the text
|
||||
json_pattern = r'\{[^{}]*"image_prompts"\s*:\s*\[[^\]]*\][^{}]*\}'
|
||||
match = re.search(json_pattern, text, re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(0))
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# If all fails, raise error
|
||||
raise json.JSONDecodeError("No valid JSON found", text, 0)
|
||||
|
||||
@@ -1,179 +0,0 @@
|
||||
"""
|
||||
Narration generation service
|
||||
|
||||
Supports two content sources:
|
||||
1. Topic: Generate narrations from a topic/theme
|
||||
2. Content: Extract/refine narrations from user-provided content
|
||||
"""
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import List, Optional, Literal
|
||||
|
||||
from loguru import logger
|
||||
|
||||
from pixelle_video.models.storyboard import StoryboardConfig, ContentMetadata
|
||||
from pixelle_video.prompts import (
|
||||
build_topic_narration_prompt,
|
||||
build_content_narration_prompt,
|
||||
)
|
||||
|
||||
|
||||
class NarrationGeneratorService:
|
||||
"""Narration generation service"""
|
||||
|
||||
def __init__(self, pixelle_video_core):
|
||||
"""
|
||||
Initialize
|
||||
|
||||
Args:
|
||||
pixelle_video_core: PixelleVideoCore instance (for calling llm)
|
||||
"""
|
||||
self.core = pixelle_video_core
|
||||
|
||||
async def generate_narrations(
|
||||
self,
|
||||
config: StoryboardConfig,
|
||||
source_type: Literal["topic", "content"],
|
||||
content_metadata: Optional[ContentMetadata] = None,
|
||||
topic: Optional[str] = None,
|
||||
content: Optional[str] = None,
|
||||
) -> List[str]:
|
||||
"""
|
||||
Generate storyboard narrations from different sources
|
||||
|
||||
Args:
|
||||
config: Storyboard configuration
|
||||
source_type: Type of content source ("topic" or "content")
|
||||
content_metadata: Content metadata (optional, not currently used)
|
||||
topic: Topic/theme (required if source_type="topic")
|
||||
content: User-provided content (required if source_type="content")
|
||||
|
||||
Returns:
|
||||
List of narration texts
|
||||
|
||||
Raises:
|
||||
ValueError: If parameters don't match source_type or narration count mismatch
|
||||
json.JSONDecodeError: If unable to parse LLM response as JSON
|
||||
|
||||
Examples:
|
||||
# Generate from topic
|
||||
>>> narrations = await service.generate_narrations(
|
||||
... config=config,
|
||||
... source_type="topic",
|
||||
... topic="如何提高学习效率"
|
||||
... )
|
||||
|
||||
# Generate from user content
|
||||
>>> narrations = await service.generate_narrations(
|
||||
... config=config,
|
||||
... source_type="content",
|
||||
... content="Today I want to share three useful tips..."
|
||||
... )
|
||||
"""
|
||||
# 1. Build prompt based on source_type
|
||||
if source_type == "topic":
|
||||
if topic is None:
|
||||
raise ValueError("topic is required when source_type='topic'")
|
||||
logger.info(f"Generating topic narrations for: {topic}")
|
||||
prompt = build_topic_narration_prompt(
|
||||
topic=topic,
|
||||
n_storyboard=config.n_storyboard,
|
||||
min_words=config.min_narration_words,
|
||||
max_words=config.max_narration_words
|
||||
)
|
||||
|
||||
else: # content
|
||||
if content is None:
|
||||
raise ValueError("content is required when source_type='content'")
|
||||
logger.info(f"Generating narrations from user content ({len(content)} chars)")
|
||||
prompt = build_content_narration_prompt(
|
||||
content=content,
|
||||
n_storyboard=config.n_storyboard,
|
||||
min_words=config.min_narration_words,
|
||||
max_words=config.max_narration_words
|
||||
)
|
||||
|
||||
# 2. Call LLM (using self.core.llm)
|
||||
response = await self.core.llm(
|
||||
prompt=prompt,
|
||||
temperature=0.8, # Higher temperature for more creativity
|
||||
max_tokens=2000
|
||||
)
|
||||
|
||||
logger.debug(f"LLM response: {response[:200]}...")
|
||||
|
||||
# 3. Parse JSON
|
||||
try:
|
||||
result = self._parse_json(response)
|
||||
narrations = result["narrations"]
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Failed to parse LLM response as JSON: {e}")
|
||||
logger.error(f"Response: {response}")
|
||||
raise
|
||||
except KeyError:
|
||||
logger.error("Response JSON missing 'narrations' key")
|
||||
logger.error(f"Response: {response}")
|
||||
raise ValueError("Invalid response format")
|
||||
|
||||
# 4. Validate count (take first N if got more)
|
||||
if len(narrations) > config.n_storyboard:
|
||||
logger.warning(
|
||||
f"Got {len(narrations)} narrations, taking first {config.n_storyboard}"
|
||||
)
|
||||
narrations = narrations[:config.n_storyboard]
|
||||
elif len(narrations) < config.n_storyboard:
|
||||
raise ValueError(
|
||||
f"Expected at least {config.n_storyboard} narrations, "
|
||||
f"got only {len(narrations)}"
|
||||
)
|
||||
|
||||
# 5. Validate word count for each narration
|
||||
for i, text in enumerate(narrations):
|
||||
word_count = len(text)
|
||||
if word_count < config.min_narration_words:
|
||||
logger.warning(
|
||||
f"Narration {i} too short: {word_count} chars "
|
||||
f"(min: {config.min_narration_words})"
|
||||
)
|
||||
|
||||
logger.info(f"Generated {len(narrations)} narrations successfully")
|
||||
return narrations
|
||||
|
||||
def _parse_json(self, text: str) -> dict:
|
||||
"""
|
||||
Parse JSON from text, with fallback to extract JSON from markdown code blocks
|
||||
|
||||
Args:
|
||||
text: Text containing JSON
|
||||
|
||||
Returns:
|
||||
Parsed JSON dict
|
||||
"""
|
||||
# Try direct parsing first
|
||||
try:
|
||||
return json.loads(text)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try to extract JSON from markdown code block
|
||||
json_pattern = r'```(?:json)?\s*([\s\S]+?)\s*```'
|
||||
match = re.search(json_pattern, text, re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(1))
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try to find any JSON object in the text
|
||||
json_pattern = r'\{[^{}]*"narrations"\s*:\s*\[[^\]]*\][^{}]*\}'
|
||||
match = re.search(json_pattern, text, re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(0))
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# If all fails, raise error
|
||||
raise json.JSONDecodeError("No valid JSON found", text, 0)
|
||||
|
||||
@@ -1,138 +0,0 @@
|
||||
"""
|
||||
Title Generator Service
|
||||
|
||||
Service for generating video titles from content.
|
||||
"""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from loguru import logger
|
||||
|
||||
|
||||
# Title generation constants
|
||||
AUTO_LENGTH_THRESHOLD = 15
|
||||
MAX_TITLE_LENGTH = 15
|
||||
|
||||
|
||||
class TitleGeneratorService:
|
||||
"""
|
||||
Title generation service
|
||||
|
||||
Generates video titles from content using different strategies:
|
||||
- auto: Automatically decide based on content length
|
||||
- direct: Use content directly as title
|
||||
- llm: Always use LLM to generate title
|
||||
"""
|
||||
|
||||
def __init__(self, pixelle_video_core):
|
||||
"""
|
||||
Initialize title generator service
|
||||
|
||||
Args:
|
||||
pixelle_video_core: PixelleVideoCore instance
|
||||
"""
|
||||
self.core = pixelle_video_core
|
||||
|
||||
async def __call__(
|
||||
self,
|
||||
content: str,
|
||||
strategy: Literal["auto", "direct", "llm"] = "auto",
|
||||
max_length: int = MAX_TITLE_LENGTH
|
||||
) -> str:
|
||||
"""
|
||||
Generate title from content
|
||||
|
||||
Args:
|
||||
content: Source content (topic or script)
|
||||
strategy: Generation strategy
|
||||
- "auto": Auto-decide based on content length (default)
|
||||
* If content <= AUTO_LENGTH_THRESHOLD chars: use directly
|
||||
* If content > AUTO_LENGTH_THRESHOLD chars: use LLM
|
||||
- "direct": Use content directly (truncated to max_length if needed)
|
||||
- "llm": Always use LLM to generate title
|
||||
max_length: Maximum title length (default: MAX_TITLE_LENGTH)
|
||||
|
||||
Returns:
|
||||
Generated title
|
||||
|
||||
Examples:
|
||||
# Auto strategy (default)
|
||||
>>> title = await title_generator("AI技术") # Short, use directly
|
||||
>>> # Returns: "AI技术"
|
||||
|
||||
>>> title = await title_generator("如何在信息爆炸时代保持深度思考") # Long, use LLM
|
||||
>>> # Returns: "信息时代的深度思考" (LLM generated)
|
||||
|
||||
# Direct strategy
|
||||
>>> title = await title_generator("Very long content...", strategy="direct")
|
||||
>>> # Returns: "Very long content..." (truncated to max_length)
|
||||
|
||||
# LLM strategy
|
||||
>>> title = await title_generator("AI", strategy="llm") # Force LLM even for short content
|
||||
>>> # Returns: "人工智能技术" (LLM generated)
|
||||
"""
|
||||
if strategy == "direct":
|
||||
return self._use_directly(content, max_length)
|
||||
elif strategy == "llm":
|
||||
return await self._generate_by_llm(content, max_length)
|
||||
else: # auto
|
||||
if len(content.strip()) <= AUTO_LENGTH_THRESHOLD:
|
||||
return content.strip()
|
||||
return await self._generate_by_llm(content, max_length)
|
||||
|
||||
def _use_directly(self, content: str, max_length: int) -> str:
|
||||
"""
|
||||
Use content directly as title (with truncation if needed)
|
||||
|
||||
Args:
|
||||
content: Source content
|
||||
max_length: Maximum title length
|
||||
|
||||
Returns:
|
||||
Truncated or original content
|
||||
"""
|
||||
content = content.strip()
|
||||
if len(content) <= max_length:
|
||||
return content
|
||||
return content[:max_length]
|
||||
|
||||
async def _generate_by_llm(self, content: str, max_length: int) -> str:
|
||||
"""
|
||||
Generate title using LLM
|
||||
|
||||
Args:
|
||||
content: Source content (topic or script)
|
||||
max_length: Maximum title length
|
||||
|
||||
Returns:
|
||||
LLM-generated title
|
||||
"""
|
||||
from pixelle_video.prompts import build_title_generation_prompt
|
||||
|
||||
# Build prompt using template
|
||||
prompt = build_title_generation_prompt(content, max_length=500)
|
||||
|
||||
# Call LLM to generate title
|
||||
response = await self.core.llm(
|
||||
prompt=prompt,
|
||||
temperature=0.7,
|
||||
max_tokens=50
|
||||
)
|
||||
|
||||
# Clean up response
|
||||
title = response.strip()
|
||||
|
||||
# Remove quotes if present
|
||||
if title.startswith('"') and title.endswith('"'):
|
||||
title = title[1:-1]
|
||||
if title.startswith("'") and title.endswith("'"):
|
||||
title = title[1:-1]
|
||||
|
||||
# Limit to max_length (safety)
|
||||
if len(title) > max_length:
|
||||
title = title[:max_length]
|
||||
|
||||
logger.debug(f"Generated title: '{title}' (length: {len(title)})")
|
||||
|
||||
return title
|
||||
|
||||
@@ -1,492 +0,0 @@
|
||||
"""
|
||||
Video Generator Service
|
||||
|
||||
End-to-end service for generating short videos from content.
|
||||
"""
|
||||
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Optional, Callable, Literal
|
||||
|
||||
from loguru import logger
|
||||
|
||||
from pixelle_video.models.progress import ProgressEvent
|
||||
from pixelle_video.models.storyboard import (
|
||||
Storyboard,
|
||||
StoryboardFrame,
|
||||
StoryboardConfig,
|
||||
ContentMetadata,
|
||||
VideoGenerationResult
|
||||
)
|
||||
|
||||
|
||||
class VideoGeneratorService:
|
||||
"""
|
||||
Video generation service
|
||||
|
||||
Orchestrates the complete pipeline:
|
||||
1. Generate narrations (LLM)
|
||||
2. Generate image prompts (LLM)
|
||||
3. Process each frame (TTS + Image + Compose + Video)
|
||||
4. Concatenate all segments
|
||||
5. Add BGM (optional)
|
||||
"""
|
||||
|
||||
def __init__(self, pixelle_video_core):
|
||||
"""
|
||||
Initialize video generator service
|
||||
|
||||
Args:
|
||||
pixelle_video_core: PixelleVideoCore instance
|
||||
"""
|
||||
self.core = pixelle_video_core
|
||||
|
||||
async def __call__(
|
||||
self,
|
||||
# === Input ===
|
||||
text: str,
|
||||
|
||||
# === Processing Mode ===
|
||||
mode: Literal["generate", "fixed"] = "generate",
|
||||
|
||||
# === Optional Title ===
|
||||
title: Optional[str] = None,
|
||||
|
||||
# === Basic Config ===
|
||||
n_scenes: int = 5, # Only used in generate mode; ignored in fixed mode
|
||||
voice_id: str = "[Chinese] zh-CN Yunjian",
|
||||
tts_workflow: Optional[str] = None,
|
||||
tts_speed: float = 1.2,
|
||||
ref_audio: Optional[str] = None, # Reference audio for voice cloning
|
||||
output_path: Optional[str] = None,
|
||||
|
||||
# === LLM Parameters ===
|
||||
min_narration_words: int = 5,
|
||||
max_narration_words: int = 20,
|
||||
min_image_prompt_words: int = 30,
|
||||
max_image_prompt_words: int = 60,
|
||||
|
||||
# === Image Parameters ===
|
||||
image_width: int = 1024,
|
||||
image_height: int = 1024,
|
||||
image_workflow: Optional[str] = None,
|
||||
|
||||
# === Video Parameters ===
|
||||
video_fps: int = 30,
|
||||
|
||||
# === Frame Template (determines video size) ===
|
||||
frame_template: Optional[str] = None,
|
||||
|
||||
# === Image Style ===
|
||||
prompt_prefix: Optional[str] = None,
|
||||
|
||||
# === BGM Parameters ===
|
||||
bgm_path: Optional[str] = None,
|
||||
bgm_volume: float = 0.2,
|
||||
bgm_mode: Literal["once", "loop"] = "loop",
|
||||
|
||||
# === Advanced Options ===
|
||||
content_metadata: Optional[ContentMetadata] = None,
|
||||
progress_callback: Optional[Callable[[ProgressEvent], None]] = None,
|
||||
) -> VideoGenerationResult:
|
||||
"""
|
||||
Generate short video from text input
|
||||
|
||||
Args:
|
||||
text: Text input (required)
|
||||
- For generate mode: topic/theme (e.g., "如何提高学习效率")
|
||||
- For fixed mode: complete narration script (each line is a narration)
|
||||
|
||||
mode: Processing mode (default "generate")
|
||||
- "generate": LLM generates narrations from topic/theme, creates n_scenes
|
||||
- "fixed": Use existing script as-is, each line becomes a narration
|
||||
|
||||
Note: In fixed mode, n_scenes is ignored (uses actual line count)
|
||||
|
||||
title: Video title (optional)
|
||||
- If provided, use it as the video title
|
||||
- If not provided:
|
||||
* generate mode → use text as title
|
||||
* fixed mode → LLM generates title from script
|
||||
|
||||
n_scenes: Number of storyboard scenes (default 5)
|
||||
Only effective in generate mode; ignored in fixed mode
|
||||
|
||||
voice_id: TTS voice ID (default "[Chinese] zh-CN Yunjian")
|
||||
tts_workflow: TTS workflow filename (e.g., "tts_edge.json", None = use default)
|
||||
tts_speed: TTS speed multiplier (1.0 = normal, 1.2 = 20% faster, default 1.2)
|
||||
output_path: Output video path (auto-generated if None)
|
||||
|
||||
min_narration_words: Min narration length (generate mode only)
|
||||
max_narration_words: Max narration length (generate mode only)
|
||||
min_image_prompt_words: Min image prompt length
|
||||
max_image_prompt_words: Max image prompt length
|
||||
|
||||
image_width: Generated image width (default 1024)
|
||||
image_height: Generated image height (default 1024)
|
||||
image_workflow: Image workflow filename (e.g., "image_flux.json", None = use default)
|
||||
|
||||
video_fps: Video frame rate (default 30)
|
||||
|
||||
frame_template: HTML template path with size (None = use default "1080x1920/default.html")
|
||||
Format: "SIZExSIZE/template.html" (e.g., "1080x1920/default.html", "1920x1080/modern.html")
|
||||
Video size is automatically determined from template path
|
||||
|
||||
prompt_prefix: Image prompt prefix (overrides config.yaml if provided)
|
||||
e.g., "anime style, vibrant colors" or "" for no prefix
|
||||
|
||||
bgm_path: BGM path (filename like "default.mp3", custom path, or None)
|
||||
bgm_volume: BGM volume 0.0-1.0 (default 0.2)
|
||||
bgm_mode: BGM mode "once" or "loop" (default "loop")
|
||||
|
||||
content_metadata: Content metadata (optional, for display)
|
||||
progress_callback: Progress callback function(message, progress)
|
||||
|
||||
Returns:
|
||||
VideoGenerationResult with video path and metadata
|
||||
|
||||
Examples:
|
||||
# Generate mode: LLM creates narrations from topic
|
||||
>>> result = await pixelle_video.generate_video(
|
||||
... text="如何在信息爆炸时代保持深度思考",
|
||||
... mode="generate",
|
||||
... n_scenes=5,
|
||||
... bgm_path="default"
|
||||
... )
|
||||
|
||||
# Fixed mode: Use existing script (each line is a narration)
|
||||
>>> script = '''大家好,今天跟你分享三个学习技巧
|
||||
... 第一个技巧是专注力训练,每天冥想10分钟
|
||||
... 第二个技巧是主动回忆,学完立即复述
|
||||
... 第三个技巧是间隔重复,学习后定期复习'''
|
||||
>>> result = await pixelle_video.generate_video(
|
||||
... text=script,
|
||||
... mode="fixed",
|
||||
... title="三个学习技巧"
|
||||
... )
|
||||
>>> print(result.video_path)
|
||||
"""
|
||||
# ========== Step 0: Process text and determine title ==========
|
||||
logger.info(f"🚀 Starting video generation in '{mode}' mode")
|
||||
logger.info(f" Text length: {len(text)} chars")
|
||||
|
||||
# Determine final title (priority: user-specified > auto-generated)
|
||||
if title:
|
||||
# User specified title, use it directly
|
||||
final_title = title
|
||||
logger.info(f" Title: '{title}' (user-specified)")
|
||||
else:
|
||||
# Auto-generate title using title_generator service
|
||||
self._report_progress(progress_callback, "generating_title", 0.01)
|
||||
if mode == "generate":
|
||||
# Auto strategy: decide based on content length
|
||||
final_title = await self.core.title_generator(text, strategy="auto")
|
||||
logger.info(f" Title: '{final_title}' (auto-generated)")
|
||||
else: # fixed
|
||||
# Force LLM strategy: always use LLM for script
|
||||
final_title = await self.core.title_generator(text, strategy="llm")
|
||||
logger.info(f" Title: '{final_title}' (LLM-generated)")
|
||||
|
||||
# ========== Step 0.5: Create isolated task directory ==========
|
||||
from pixelle_video.utils.os_util import (
|
||||
create_task_output_dir,
|
||||
get_task_final_video_path
|
||||
)
|
||||
|
||||
# Create isolated task directory for this video generation
|
||||
task_dir, task_id = create_task_output_dir()
|
||||
logger.info(f"📁 Task directory created: {task_dir}")
|
||||
logger.info(f" Task ID: {task_id}")
|
||||
|
||||
# Determine final video path
|
||||
user_specified_output = None
|
||||
if output_path is None:
|
||||
# Use standardized path: output/{task_id}/final.mp4
|
||||
output_path = get_task_final_video_path(task_id)
|
||||
else:
|
||||
# User specified custom path: save it and use task path for generation
|
||||
user_specified_output = output_path
|
||||
output_path = get_task_final_video_path(task_id)
|
||||
logger.info(f" Will copy final video to: {user_specified_output}")
|
||||
|
||||
# Create storyboard config
|
||||
config = StoryboardConfig(
|
||||
task_id=task_id, # Pass task_id for file isolation
|
||||
n_storyboard=n_scenes,
|
||||
min_narration_words=min_narration_words,
|
||||
max_narration_words=max_narration_words,
|
||||
min_image_prompt_words=min_image_prompt_words,
|
||||
max_image_prompt_words=max_image_prompt_words,
|
||||
video_fps=video_fps,
|
||||
voice_id=voice_id,
|
||||
tts_workflow=tts_workflow,
|
||||
tts_speed=tts_speed,
|
||||
ref_audio=ref_audio,
|
||||
image_width=image_width,
|
||||
image_height=image_height,
|
||||
image_workflow=image_workflow,
|
||||
frame_template=frame_template or "1080x1920/default.html"
|
||||
)
|
||||
|
||||
# Create storyboard
|
||||
storyboard = Storyboard(
|
||||
title=final_title, # Use final_title as video title
|
||||
config=config,
|
||||
content_metadata=content_metadata,
|
||||
created_at=datetime.now()
|
||||
)
|
||||
|
||||
try:
|
||||
# ========== Step 1: Generate/Split narrations ==========
|
||||
if mode == "generate":
|
||||
# Generate narrations using LLM
|
||||
self._report_progress(progress_callback, "generating_narrations", 0.05)
|
||||
narrations = await self.core.narration_generator.generate_narrations(
|
||||
config=config,
|
||||
source_type="topic",
|
||||
content_metadata=None,
|
||||
topic=text,
|
||||
content=None
|
||||
)
|
||||
logger.info(f"✅ Generated {len(narrations)} narrations")
|
||||
else: # fixed
|
||||
# Split fixed script by lines (trust user input completely)
|
||||
self._report_progress(progress_callback, "splitting_script", 0.05)
|
||||
narrations = await self._split_narration_script(text, config)
|
||||
logger.info(f"✅ Split script into {len(narrations)} segments (by lines)")
|
||||
logger.info(f" Note: n_scenes={n_scenes} is ignored in fixed mode")
|
||||
|
||||
# Step 2: Generate image prompts
|
||||
self._report_progress(progress_callback, "generating_image_prompts", 0.15)
|
||||
|
||||
# Override prompt_prefix if provided (temporarily modify config)
|
||||
original_prefix = None
|
||||
if prompt_prefix is not None:
|
||||
# Fix: image config is under comfyui.image, not directly under config
|
||||
image_config = self.core.config.get("comfyui", {}).get("image", {})
|
||||
original_prefix = image_config.get("prompt_prefix")
|
||||
image_config["prompt_prefix"] = prompt_prefix
|
||||
logger.info(f"Using custom prompt_prefix: '{prompt_prefix}'")
|
||||
|
||||
try:
|
||||
# Create progress callback wrapper for image prompt generation (15%-30% range)
|
||||
def image_prompt_progress(completed: int, total: int, message: str):
|
||||
# Map batch progress to 15%-30% range
|
||||
batch_progress = completed / total if total > 0 else 0
|
||||
overall_progress = 0.15 + (batch_progress * 0.15) # 15% -> 30%
|
||||
self._report_progress(
|
||||
progress_callback,
|
||||
"generating_image_prompts",
|
||||
overall_progress,
|
||||
extra_info=message
|
||||
)
|
||||
|
||||
image_prompts = await self.core.image_prompt_generator.generate_image_prompts(
|
||||
narrations=narrations,
|
||||
config=config,
|
||||
progress_callback=image_prompt_progress
|
||||
)
|
||||
finally:
|
||||
# Restore original prompt_prefix
|
||||
if original_prefix is not None:
|
||||
image_config["prompt_prefix"] = original_prefix
|
||||
logger.info(f"✅ Generated {len(image_prompts)} image prompts")
|
||||
|
||||
# Step 3: Create frames
|
||||
for i, (narration, image_prompt) in enumerate(zip(narrations, image_prompts)):
|
||||
frame = StoryboardFrame(
|
||||
index=i,
|
||||
narration=narration,
|
||||
image_prompt=image_prompt,
|
||||
created_at=datetime.now()
|
||||
)
|
||||
storyboard.frames.append(frame)
|
||||
|
||||
# Step 4: Process each frame
|
||||
for i, frame in enumerate(storyboard.frames):
|
||||
# Calculate fine-grained progress for this frame
|
||||
base_progress = 0.2 # Frames processing starts at 20%
|
||||
frame_range = 0.6 # Frames processing takes 60% (20%-80%)
|
||||
per_frame_progress = frame_range / len(storyboard.frames)
|
||||
|
||||
# Create frame-specific progress callback
|
||||
def frame_progress_callback(event: ProgressEvent):
|
||||
"""Report sub-step progress within current frame"""
|
||||
# Calculate overall progress: base + previous frames + current frame progress
|
||||
overall_progress = base_progress + (per_frame_progress * i) + (per_frame_progress * event.progress)
|
||||
# Forward the event with adjusted overall progress
|
||||
if progress_callback:
|
||||
adjusted_event = ProgressEvent(
|
||||
event_type=event.event_type,
|
||||
progress=overall_progress,
|
||||
frame_current=event.frame_current,
|
||||
frame_total=event.frame_total,
|
||||
step=event.step,
|
||||
action=event.action
|
||||
)
|
||||
progress_callback(adjusted_event)
|
||||
|
||||
# Report frame start
|
||||
self._report_progress(
|
||||
progress_callback,
|
||||
"processing_frame",
|
||||
base_progress + (per_frame_progress * i),
|
||||
frame_current=i+1,
|
||||
frame_total=len(storyboard.frames)
|
||||
)
|
||||
|
||||
processed_frame = await self.core.frame_processor(
|
||||
frame=frame,
|
||||
storyboard=storyboard,
|
||||
config=config,
|
||||
total_frames=len(storyboard.frames),
|
||||
progress_callback=frame_progress_callback
|
||||
)
|
||||
storyboard.total_duration += processed_frame.duration
|
||||
logger.info(f"✅ Frame {i+1} completed ({processed_frame.duration:.2f}s)")
|
||||
|
||||
# Step 5: Concatenate videos
|
||||
self._report_progress(progress_callback, "concatenating", 0.85)
|
||||
segment_paths = [frame.video_segment_path for frame in storyboard.frames]
|
||||
|
||||
from pixelle_video.services.video import VideoService
|
||||
video_service = VideoService()
|
||||
|
||||
final_video_path = video_service.concat_videos(
|
||||
videos=segment_paths,
|
||||
output=output_path,
|
||||
bgm_path=bgm_path,
|
||||
bgm_volume=bgm_volume,
|
||||
bgm_mode=bgm_mode
|
||||
)
|
||||
|
||||
storyboard.final_video_path = final_video_path
|
||||
storyboard.completed_at = datetime.now()
|
||||
|
||||
# Copy to user-specified path if provided
|
||||
if user_specified_output:
|
||||
import shutil
|
||||
Path(user_specified_output).parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy2(final_video_path, user_specified_output)
|
||||
logger.info(f"📹 Final video copied to: {user_specified_output}")
|
||||
# Use user-specified path in result
|
||||
final_video_path = user_specified_output
|
||||
storyboard.final_video_path = user_specified_output
|
||||
|
||||
logger.success(f"🎬 Video generation completed: {final_video_path}")
|
||||
|
||||
# Step 6: Create result
|
||||
self._report_progress(progress_callback, "completed", 1.0)
|
||||
|
||||
video_path_obj = Path(final_video_path)
|
||||
file_size = video_path_obj.stat().st_size
|
||||
|
||||
result = VideoGenerationResult(
|
||||
video_path=final_video_path,
|
||||
storyboard=storyboard,
|
||||
duration=storyboard.total_duration,
|
||||
file_size=file_size
|
||||
)
|
||||
|
||||
logger.info(f"✅ Generated video: {final_video_path}")
|
||||
logger.info(f" Duration: {storyboard.total_duration:.2f}s")
|
||||
logger.info(f" Size: {file_size / (1024*1024):.2f} MB")
|
||||
logger.info(f" Frames: {len(storyboard.frames)}")
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"❌ Video generation failed: {e}")
|
||||
raise
|
||||
|
||||
def _report_progress(
|
||||
self,
|
||||
callback: Optional[Callable[[ProgressEvent], None]],
|
||||
event_type: str,
|
||||
progress: float,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Report progress via callback
|
||||
|
||||
Args:
|
||||
callback: Progress callback function
|
||||
event_type: Type of progress event
|
||||
progress: Progress value (0.0-1.0)
|
||||
**kwargs: Additional event-specific parameters (frame_current, frame_total, etc.)
|
||||
"""
|
||||
if callback:
|
||||
event = ProgressEvent(event_type=event_type, progress=progress, **kwargs)
|
||||
callback(event)
|
||||
logger.debug(f"Progress: {progress*100:.0f}% - {event_type}")
|
||||
else:
|
||||
logger.debug(f"Progress: {progress*100:.0f}% - {event_type}")
|
||||
|
||||
def _parse_json(self, text: str) -> dict:
|
||||
"""
|
||||
Parse JSON from text, with fallback to extract JSON from markdown code blocks
|
||||
|
||||
Args:
|
||||
text: Text containing JSON
|
||||
|
||||
Returns:
|
||||
Parsed JSON dict
|
||||
"""
|
||||
import json
|
||||
import re
|
||||
|
||||
# Try direct parsing first
|
||||
try:
|
||||
return json.loads(text)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try to extract JSON from markdown code block
|
||||
json_pattern = r'```(?:json)?\s*([\s\S]+?)\s*```'
|
||||
match = re.search(json_pattern, text, re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(1))
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try to find any JSON object in the text (flexible pattern for narrations)
|
||||
json_pattern = r'\{[^{}]*"narrations"\s*:\s*\[[^\]]*\][^{}]*\}'
|
||||
match = re.search(json_pattern, text, re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(0))
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# If all fails, raise error
|
||||
raise json.JSONDecodeError("No valid JSON found", text, 0)
|
||||
|
||||
async def _split_narration_script(self, script: str, config: StoryboardConfig) -> list[str]:
|
||||
"""
|
||||
Split user-provided narration script into segments (trust user input completely).
|
||||
|
||||
Simply split by newline, each line becomes a narration segment.
|
||||
Empty lines are filtered out.
|
||||
|
||||
Args:
|
||||
script: Fixed narration script (each line is a narration)
|
||||
config: Storyboard configuration (unused, kept for interface compatibility)
|
||||
|
||||
Returns:
|
||||
List of narration segments
|
||||
"""
|
||||
logger.info(f"Splitting script by lines (length: {len(script)} chars)")
|
||||
|
||||
# Split by newline, filter empty lines
|
||||
narrations = [line.strip() for line in script.split('\n') if line.strip()]
|
||||
|
||||
logger.info(f"✅ Split script into {len(narrations)} segments (by lines)")
|
||||
|
||||
# Log statistics
|
||||
if narrations:
|
||||
lengths = [len(s) for s in narrations]
|
||||
logger.info(f" Min: {min(lengths)} chars, Max: {max(lengths)} chars, Avg: {sum(lengths)//len(lengths)} chars")
|
||||
|
||||
return narrations
|
||||
|
||||
Reference in New Issue
Block a user