fix: Filter non-serializable objects in pipeline metadata
- Skip CharacterMemory and callback functions during serialization - Add .pids/ and .serena/ to gitignore - Add workflow integration documentation Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -76,3 +76,5 @@ examples/
|
||||
repositories/
|
||||
|
||||
*.out
|
||||
.pids/
|
||||
.serena/
|
||||
|
||||
434
docs/工作流完整接入示例.md
Normal file
434
docs/工作流完整接入示例.md
Normal file
@@ -0,0 +1,434 @@
|
||||
# 工作流完整接入示例
|
||||
|
||||
# 📝 RunningHub AI 工作流交互使用手册(workflow 版本)
|
||||
|
||||
## 1. 功能概述
|
||||
|
||||
本脚本通过调用 RunningHub AI 平台的 OpenAPI,实现从本地加载工作流 JSON、修改节点信息、上传文件、提交任务并自动查询结果的全流程操作。
|
||||
|
||||
主要功能包括:
|
||||
|
||||
- 读取本地工作流配置(JSON 文件)
|
||||
- 生成可修改节点信息列表(nodeInfoList)
|
||||
- 根据节点类型(图片、文本等)修改节点值
|
||||
- 上传图片、音频、视频文件
|
||||
- 向 RunningHub 提交任务并实时查询状态
|
||||
- 输出最终生成结果的文件链接
|
||||
|
||||
✅ 适用于有自定义工作流(workflowId)的高级用户,可在不打开网页的情况下自动执行 AI 工作流。
|
||||
|
||||
---
|
||||
|
||||
## 2. 文件说明与主要函数
|
||||
|
||||
### 💡 主要文件
|
||||
|
||||
| 文件名 | 功能 |
|
||||
|-------------|------|
|
||||
| workflow.py | 主执行脚本 |
|
||||
| api.json | 从 RunningHub 下载的工作流配置文件(包含节点定义) |
|
||||
|
||||
### 🔧 核心函数介绍
|
||||
|
||||
| 函数名 | 功能描述 |
|
||||
|--------|----------|
|
||||
| load_json(file_path) | 从本地读取并解析工作流 JSON 文件 |
|
||||
| convert_to_node_info_list(data) | 将 JSON 格式转换为节点信息列表 |
|
||||
| upload_file(API_KEY, file_path) | 上传本地文件(image/audio/video)至 RunningHub |
|
||||
| submit_task(workflowId, node_info_list, API_KEY) | 提交任务,启动 AI 工作流执行 |
|
||||
| query_task_outputs(task_id, API_KEY) | 轮询任务执行状态并获取结果输出 |
|
||||
|
||||
---
|
||||
|
||||
## 3. 操作步骤详解
|
||||
|
||||
### Step 1️⃣:输入必要信息
|
||||
|
||||
运行脚本后,系统会提示输入以下信息:
|
||||
|
||||
```text
|
||||
请输入你的 api_key:
|
||||
```
|
||||
说明:在 RunningHub 控制台“API 调用”中可获得。
|
||||
示例:`0s2d1***********2n3mk4`
|
||||
```
|
||||
请输入 workflowId:
|
||||
```
|
||||
示例:`1980468315921559554`
|
||||
来源于链接末尾:https://www.runninghub.cn/workflow/1980237776367083521?source=workspace
|
||||
|
||||
然后输入本地工作流 JSON 文件路径:
|
||||
|
||||
```
|
||||
输入您的json文件地址(json文件一定要在自己的工作台中获得,获得途径为导出工作流api到本地):
|
||||
```
|
||||
示例:`C:\Users\Mayn\Downloads\api.json`
|
||||
|
||||
此时脚本会输出工作流中的所有节点信息:
|
||||
|
||||
```
|
||||
等待node_info_list生成(包含所有可修改的节点)
|
||||
{'3': {'inputs': {...}}, '4': {...}, '6': {...}, ...}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Step 2️⃣:查看并修改节点
|
||||
|
||||
脚本会提示:
|
||||
|
||||
```text
|
||||
请输入 nodeId(输入 'exit' 结束修改):
|
||||
```
|
||||
|
||||
输入节点 nodeId(如 10),脚本会展示该节点的所有字段:
|
||||
|
||||
```
|
||||
🧩 找到节点 10 的字段如下:
|
||||
(0, {'nodeId': '10', 'fieldName': 'image', 'fieldValue': 'xxx.jpg'})
|
||||
```
|
||||
|
||||
接着输入要修改的字段名:
|
||||
|
||||
```
|
||||
请输入要修改的 fieldName:
|
||||
```
|
||||
示例:`image`
|
||||
|
||||
---
|
||||
|
||||
### Step 3️⃣:修改字段值
|
||||
|
||||
#### 📷 如果是文件类型(image/audio/video)
|
||||
|
||||
```
|
||||
请输入您本地image文件路径:
|
||||
```
|
||||
示例输入:`D:\R.jpg`
|
||||
|
||||
上传成功后:
|
||||
|
||||
```
|
||||
等待文件上传中
|
||||
上传结果: {'code': 0, 'msg': 'success', 'data': {'fileName': 'api/xxx.jpg', 'fileType': 'input'}}
|
||||
✅ 已更新 image fieldValue: api/xxx.jpg
|
||||
```
|
||||
|
||||
#### 📝 如果是文本或数值类型
|
||||
|
||||
```
|
||||
请输入新的 fieldValue (text):
|
||||
```
|
||||
示例输入:`1 girl in classroom`
|
||||
|
||||
返回:
|
||||
|
||||
```
|
||||
✅ 已更新 fieldValue: 1 girl in classroom
|
||||
```
|
||||
|
||||
> 可多次修改不同节点,输入 `exit` 结束。
|
||||
|
||||
---
|
||||
|
||||
### Step 4️⃣:提交任务
|
||||
|
||||
输入完成后,脚本自动提交任务:
|
||||
|
||||
```
|
||||
开始提交任务,请等待
|
||||
📌 提交任务返回: {'code': 0, 'msg': 'success', 'data': {...}}
|
||||
📝 taskId: 1980471280073846785
|
||||
✅ 无节点错误,任务提交成功。
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Step 5️⃣:任务状态轮询
|
||||
|
||||
脚本每隔 5 秒查询任务状态:
|
||||
|
||||
```
|
||||
⏳ 任务运行中...
|
||||
⏳ 任务运行中...
|
||||
🎉 生成结果完成!
|
||||
```
|
||||
|
||||
如果任务失败,会打印详细原因:
|
||||
|
||||
```
|
||||
❌ 任务失败!
|
||||
节点 SaveImage 失败原因: 'str' object has no attribute 'shape'
|
||||
Traceback: [...]
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Step 6️⃣:查看结果文件
|
||||
|
||||
任务成功后会输出生成文件链接:
|
||||
|
||||
```
|
||||
🎉 生成结果完成!
|
||||
[{'fileUrl': 'https://rh-images.xiaoyaoyou.com/f24a6365b08fa3bc02f55cd1f63e74a7/output/ComfyUI_00001_hnqxe_1761016156.png',
|
||||
'fileType': 'png',
|
||||
'taskCostTime': '35',
|
||||
'nodeId': '17'}]
|
||||
✅ 任务完成!
|
||||
```
|
||||
|
||||
打开 `fileUrl` 即可查看 AI 生成的图片。
|
||||
|
||||
## 4. 完整运行流程概览
|
||||
|
||||
1️⃣ 输入 API_KEY 和 workflowId
|
||||
2️⃣ 加载本地 JSON 工作流
|
||||
3️⃣ 自动生成可修改节点列表
|
||||
4️⃣ 修改所需节点参数
|
||||
5️⃣ 上传文件(如图片)
|
||||
6️⃣ 提交任务至 RunningHub
|
||||
7️⃣ 轮询任务状态
|
||||
8️⃣ 获取并打印生成结果链接
|
||||
|
||||
---
|
||||
|
||||
## 5. 示例输出结果
|
||||
|
||||
```
|
||||
请输入你的 api_key: a0fada**************b2ke21
|
||||
请输入 workflowId: ***8315921559***
|
||||
输入您的json文件地址(json文件一定要在自己的工作台中获得,获得途径为导出工作流api到本地):C:\Users\Mayn\Downloads\api.json
|
||||
```
|
||||
```
|
||||
🧩 找到节点 10 的字段如下:
|
||||
(0, {'nodeId': '10', 'fieldName': 'image', 'fieldValue': 'xxx.jpg'})
|
||||
✅ 已更新 image fieldValue: api/xxx.jpg
|
||||
```
|
||||
```
|
||||
开始提交任务,请等待
|
||||
📌 提交任务返回: {...}
|
||||
⏳ 任务运行中...
|
||||
🎉 生成结果完成!
|
||||
✅ 任务完成!
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 6. 小贴士(Tips)
|
||||
|
||||
- 建议使用 Python 3.8+
|
||||
- 脚本可直接在终端运行:
|
||||
|
||||
```bash
|
||||
python workflow.py
|
||||
```
|
||||
|
||||
- Windows 用户注意文件路径需使用双反斜杠 `\\`
|
||||
- 若使用代理或云主机,请确保端口 443 可访问 `www.runninghub.cn`
|
||||
|
||||
```python
|
||||
import http.client
|
||||
import json
|
||||
import mimetypes
|
||||
from codecs import encode
|
||||
import time
|
||||
import os
|
||||
import requests
|
||||
API_HOST = "www.runninghub.cn"
|
||||
def load_json(file_path):
|
||||
# 打开并读取 JSON 文件
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
data = json.load(f) # 将 JSON 内容解析为 Python 对象(dict 或 list)
|
||||
# 打印读取到的数据
|
||||
print(data)
|
||||
return data
|
||||
def convert_to_node_info_list(data):
|
||||
node_info_list = []
|
||||
|
||||
for node_id, node_content in data.items():
|
||||
inputs = node_content.get("inputs", {})
|
||||
for field_name, field_value in inputs.items():
|
||||
# 如果 field_value 是列表或字典,可以选择转换成字符串
|
||||
if isinstance(field_value, (list, dict)):
|
||||
field_value = json.dumps(field_value)
|
||||
else:
|
||||
field_value = str(field_value)
|
||||
|
||||
node_info_list.append({
|
||||
"nodeId": str(node_id),
|
||||
"fieldName": str(field_name),
|
||||
"fieldValue": field_value
|
||||
})
|
||||
return node_info_list
|
||||
def upload_file(API_KEY, file_path):
|
||||
"""
|
||||
上传文件到 RunningHub 平台
|
||||
"""
|
||||
url = "https://www.runninghub.cn/task/openapi/upload"
|
||||
headers = {
|
||||
'Host': 'www.runninghub.cn'
|
||||
}
|
||||
data = {
|
||||
'apiKey': API_KEY,
|
||||
'fileType': 'input'
|
||||
}
|
||||
with open(file_path, 'rb') as f:
|
||||
files = {'file': f}
|
||||
response = requests.post(url, headers=headers, files=files, data=data)
|
||||
return response.json()
|
||||
# 1️⃣ 提交任务
|
||||
def submit_task(workflowId, node_info_list,API_KEY):
|
||||
conn = http.client.HTTPSConnection("www.runninghub.cn")
|
||||
payload = json.dumps({
|
||||
"apiKey": API_KEY,
|
||||
"workflowId": workflowId,
|
||||
"nodeInfoList": node_info_list
|
||||
})
|
||||
headers = {
|
||||
'Host': 'www.runninghub.cn',
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
conn.request("POST", "/task/openapi/create", payload, headers)
|
||||
res = conn.getresponse()
|
||||
data = res.read()
|
||||
# ✅ 注意这里:用 json.loads 而不是 json.load
|
||||
data = json.loads(data.decode("utf-8"))
|
||||
print(data)
|
||||
return data
|
||||
def query_task_outputs(task_id,API_KEY):
|
||||
conn = http.client.HTTPSConnection(API_HOST)
|
||||
payload = json.dumps({
|
||||
"apiKey": API_KEY,
|
||||
"taskId": task_id
|
||||
})
|
||||
headers = {
|
||||
'Host': API_HOST,
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
conn.request("POST", "/task/openapi/outputs", payload, headers)
|
||||
res = conn.getresponse()
|
||||
data = json.loads(res.read().decode("utf-8"))
|
||||
conn.close()
|
||||
return data
|
||||
if __name__ == "__main__":
|
||||
print("下面两个输入用于获得AI工作流所需要的信息,api_key为用户的密钥从api调用——进入控制台中获得,workflowId(此为示例,具体的workflowId为你所选择的AI工作流界面上方的链接https://www.runninghub.cn/workflow/1980237776367083521?source=workspace,最后的数字为workflowId)")
|
||||
Api_key = input("请输入你的 api_key: ").strip()
|
||||
workflowId = input("请输入 workflowId: ").strip()
|
||||
print("请您下载您的工作流API json到本地")
|
||||
file_path = input("输入您的json文件地址(json文件一定要在自己的工作台中获得,获得途径为导出工作流api到本地):").strip()
|
||||
print("等待node_info_list生成(包涵所有的可以修改的node节点)")
|
||||
data = load_json(file_path)
|
||||
node_info_list = convert_to_node_info_list(data)
|
||||
print(node_info_list)
|
||||
print("下面用户可以输入工作流可以修改的节点id:nodeId,以及对应的fileName,锁定具体的节点位置,在找到具体位置之后,输入您需要修改的fileValue信息完成信息的修改用户发送AI工作流请求")
|
||||
modified_nodes = []
|
||||
while True:
|
||||
node_id_input = input("请输入 nodeId(输入 'exit' 结束修改): ").strip()
|
||||
if node_id_input.lower() == "exit":
|
||||
break
|
||||
|
||||
# 找出该 nodeId 对应的所有字段
|
||||
node_fields = [n for n in node_info_list if n['nodeId'] == node_id_input]
|
||||
|
||||
if not node_fields:
|
||||
print("❌ 未找到该 nodeId 对应的节点")
|
||||
continue
|
||||
|
||||
print(f"\n🧩 找到节点 {node_id_input} 的字段如下:")
|
||||
for field in enumerate(node_fields):
|
||||
print(field)
|
||||
|
||||
# 让用户选择要修改的字段
|
||||
field_name_input = input("\n请输入要修改的 fieldName: ").strip()
|
||||
target_node = next(
|
||||
(f for f in node_fields if f['fieldName'] == field_name_input), None
|
||||
)
|
||||
|
||||
if not target_node:
|
||||
print("❌ 未找到该 fieldName")
|
||||
continue
|
||||
|
||||
print(f"选中字段: {target_node}")
|
||||
# 根据类型处理
|
||||
if target_node['fieldName'] in ["image", "audio", "video"]:
|
||||
file_path = input(f"请输入您本地{target_node['fieldName']}文件路径: ").strip()
|
||||
print("等待文件上传中")
|
||||
upload_result = upload_file(Api_key, file_path)
|
||||
print("上传结果:", upload_result)
|
||||
# 假设 upload_file 已返回解析后的 JSON 字典
|
||||
if upload_result and upload_result.get("msg") == "success":
|
||||
uploaded_file_name = upload_result.get("data", {}).get("fileName")
|
||||
if uploaded_file_name:
|
||||
target_node['fieldValue'] = uploaded_file_name
|
||||
print(f"✅ 已更新 {target_node['fieldName']} fieldValue:", uploaded_file_name)
|
||||
else:
|
||||
print("❌ 上传失败或返回格式异常:", upload_result)
|
||||
else:
|
||||
# 其他类型直接修改
|
||||
new_value = input(f"请输入新的 fieldValue ({target_node['fieldName']}): ").strip()
|
||||
target_node['fieldValue'] = new_value
|
||||
print("✅ 已更新 fieldValue:", new_value)
|
||||
modified_nodes.append({
|
||||
"nodeId": target_node['nodeId'],
|
||||
"fieldName": target_node['fieldName'],
|
||||
"fieldValue": target_node['fieldValue']
|
||||
})
|
||||
print(modified_nodes)
|
||||
print("开始提交任务,请等待")
|
||||
# 提交任务
|
||||
submit_result = submit_task(workflowId, modified_nodes,Api_key)
|
||||
print("📌 提交任务返回:", submit_result)
|
||||
if submit_result.get("code") != 0:
|
||||
print("❌ 提交任务失败:", submit_result)
|
||||
exit()
|
||||
task_id = submit_result["data"]["taskId"]
|
||||
print(f"📝 taskId: {task_id}")
|
||||
# 解析成功返回
|
||||
prompt_tips_str = submit_result["data"].get("promptTips")
|
||||
if prompt_tips_str:
|
||||
try:
|
||||
prompt_tips = json.loads(prompt_tips_str)
|
||||
node_errors = prompt_tips.get("node_errors", {})
|
||||
if node_errors:
|
||||
print("⚠️ 节点错误信息如下:")
|
||||
for node_id, err in node_errors.items():
|
||||
print(f" 节点 {node_id} 错误: {err}")
|
||||
else:
|
||||
print("✅ 无节点错误,任务提交成功。")
|
||||
except Exception as e:
|
||||
print("⚠️ 无法解析 promptTips:", e)
|
||||
else:
|
||||
print("⚠️ 未返回 promptTips 字段。")
|
||||
timeout = 600
|
||||
start_time = time.time()
|
||||
while True:
|
||||
outputs_result = query_task_outputs(task_id, Api_key)
|
||||
code = outputs_result.get("code")
|
||||
msg = outputs_result.get("msg")
|
||||
data = outputs_result.get("data")
|
||||
if code == 0 and data: # 成功
|
||||
file_url = data[0].get("fileUrl")
|
||||
print("🎉 生成结果完成!")
|
||||
print(data)
|
||||
break
|
||||
elif code == 805: # 任务失败
|
||||
failed_reason = data.get("failedReason") if data else None
|
||||
print("❌ 任务失败!")
|
||||
if failed_reason:
|
||||
print(f"节点 {failed_reason.get('node_name')} 失败原因: {failed_reason.get('exception_message')}")
|
||||
print("Traceback:", failed_reason.get("traceback"))
|
||||
else:
|
||||
print(outputs_result)
|
||||
break
|
||||
elif code == 804 or code == 813: # 运行中或排队中
|
||||
status_text = "运行中" if code == 804 else "排队中"
|
||||
print(f"⏳ 任务{status_text}...")
|
||||
else:
|
||||
print("⚠️ 未知状态:", outputs_result)
|
||||
# 超时检查
|
||||
if time.time() - start_time > timeout:
|
||||
print("⏰ 等待超时(超过10分钟),任务未完成。")
|
||||
break
|
||||
time.sleep(5)
|
||||
print("✅ 任务完成!")
|
||||
```
|
||||
@@ -495,11 +495,26 @@ class StandardPipeline(LinearVideoPipeline):
|
||||
logger.warning("No task_id in storyboard, skipping persistence")
|
||||
return
|
||||
|
||||
# Build metadata
|
||||
input_with_title = ctx.params.copy()
|
||||
input_with_title["text"] = ctx.input_text # Ensure text is included
|
||||
if not input_with_title.get("title"):
|
||||
input_with_title["title"] = storyboard.title
|
||||
# Build metadata - filter out non-serializable objects
|
||||
clean_input = {}
|
||||
for key, value in ctx.params.items():
|
||||
# Skip non-serializable objects like CharacterMemory
|
||||
if key == "character_memory":
|
||||
# Convert to serializable dict if present
|
||||
if value is not None and hasattr(value, 'to_dict'):
|
||||
clean_input["character_memory"] = value.to_dict()
|
||||
elif key == "progress_callback":
|
||||
# Skip callback functions
|
||||
continue
|
||||
elif callable(value):
|
||||
# Skip any callable objects
|
||||
continue
|
||||
else:
|
||||
clean_input[key] = value
|
||||
|
||||
clean_input["text"] = ctx.input_text # Ensure text is included
|
||||
if not clean_input.get("title"):
|
||||
clean_input["title"] = storyboard.title
|
||||
|
||||
metadata = {
|
||||
"task_id": task_id,
|
||||
@@ -507,7 +522,7 @@ class StandardPipeline(LinearVideoPipeline):
|
||||
"completed_at": storyboard.completed_at.isoformat() if storyboard.completed_at else None,
|
||||
"status": "completed",
|
||||
|
||||
"input": input_with_title,
|
||||
"input": clean_input,
|
||||
|
||||
"result": {
|
||||
"video_path": result.video_path,
|
||||
|
||||
Reference in New Issue
Block a user