变更: - 创建 docs/ 目录统一管理所有文档 - 移动所有 API 文档到 docs/ 目录 - API_DOCS_INDEX.md - RESTFUL_API_DOCUMENTATION.md - API_SERVICE_README.md - API_CLIENT_EXAMPLES.md - API_SERVICE_GUIDE.md - BRANCH_README.md - openapi.yaml - IOPaint_API.postman_collection.json - UPGRADE_NOTES.md - 更新所有文档间的引用路径 - 更新 README.md 中的文档链接 - 创建 docs/README.md 作为文档入口 优势: ✅ 清晰的目录结构 ✅ 文档集中管理 ✅ 易于查找和维护 ✅ 符合项目规范 🔧 Generated with Claude Code
993 lines
22 KiB
Markdown
993 lines
22 KiB
Markdown
# IOPaint REST API Documentation
|
|
|
|
Official REST API documentation for IOPaint Watermark Removal Service.
|
|
|
|
**Version:** v1
|
|
**Base URL:** `https://api.iopaint.com` (production) or `http://localhost:8080` (development)
|
|
**Protocol:** HTTPS (production), HTTP (development)
|
|
|
|
---
|
|
|
|
## Table of Contents
|
|
|
|
1. [Introduction](#introduction)
|
|
2. [Authentication](#authentication)
|
|
3. [API Endpoints](#api-endpoints)
|
|
4. [Models](#models)
|
|
5. [Error Handling](#error-handling)
|
|
6. [Rate Limiting](#rate-limiting)
|
|
7. [Best Practices](#best-practices)
|
|
8. [SDKs & Libraries](#sdks--libraries)
|
|
9. [Changelog](#changelog)
|
|
|
|
---
|
|
|
|
## Introduction
|
|
|
|
The IOPaint API provides AI-powered watermark removal capabilities through a simple REST API. Built on the LaMa (Large Mask Inpainting) model, it offers fast and high-quality image restoration.
|
|
|
|
### Key Features
|
|
|
|
- **Fast Processing**: 1-2 seconds for 1024x1024 images
|
|
- **High Quality**: State-of-the-art AI model
|
|
- **Simple Integration**: Standard REST API with multipart/form-data
|
|
- **Flexible**: Optional mask support for precise control
|
|
- **Scalable**: From hobby projects to enterprise deployments
|
|
|
|
### API Capabilities
|
|
|
|
| Feature | Status | Description |
|
|
|---------|--------|-------------|
|
|
| Watermark Removal | ✅ Available | Remove watermarks from images |
|
|
| Auto Detection | ⏳ Coming Soon | Automatic watermark detection |
|
|
| Batch Processing | ⏳ Coming Soon | Process multiple images at once |
|
|
| Webhook Callbacks | ⏳ Coming Soon | Async processing with callbacks |
|
|
|
|
---
|
|
|
|
## Authentication
|
|
|
|
The IOPaint API uses API keys for authentication. All requests must include your API key in the request header.
|
|
|
|
### Obtaining an API Key
|
|
|
|
1. Sign up at [https://iopaint.com/signup](https://iopaint.com/signup)
|
|
2. Navigate to your [Dashboard](https://iopaint.com/dashboard)
|
|
3. Generate a new API key
|
|
4. Store it securely (keys cannot be recovered)
|
|
|
|
### Using Your API Key
|
|
|
|
Include your API key in the `X-API-Key` header with every request:
|
|
|
|
```http
|
|
X-API-Key: your_api_key_here
|
|
```
|
|
|
|
### Security Best Practices
|
|
|
|
- ⚠️ **Never expose your API key in client-side code**
|
|
- ✅ Store keys in environment variables
|
|
- ✅ Rotate keys periodically
|
|
- ✅ Use different keys for development and production
|
|
- ✅ Revoke compromised keys immediately
|
|
|
|
### Example
|
|
|
|
```bash
|
|
# ✅ Correct
|
|
curl https://api.iopaint.com/api/v1/health \
|
|
-H "X-API-Key: $IOPAINT_API_KEY"
|
|
|
|
# ❌ Incorrect (hardcoded key)
|
|
curl https://api.iopaint.com/api/v1/health \
|
|
-H "X-API-Key: sk_live_1234567890abcdef"
|
|
```
|
|
|
|
---
|
|
|
|
## API Endpoints
|
|
|
|
### Base URL
|
|
|
|
```
|
|
Production: https://api.iopaint.com
|
|
Development: http://localhost:8080
|
|
```
|
|
|
|
### Endpoint Overview
|
|
|
|
| Endpoint | Method | Description |
|
|
|----------|--------|-------------|
|
|
| `/api/v1/remove-watermark` | POST | Remove watermark from image |
|
|
| `/api/v1/health` | GET | Service health check |
|
|
| `/api/v1/stats` | GET | Account usage statistics |
|
|
|
|
---
|
|
|
|
## 1. Remove Watermark
|
|
|
|
Remove watermarks or unwanted objects from images using AI.
|
|
|
|
### Endpoint
|
|
|
|
```http
|
|
POST /api/v1/remove-watermark
|
|
```
|
|
|
|
### Authentication
|
|
|
|
Required. Include `X-API-Key` header.
|
|
|
|
### Request Headers
|
|
|
|
| Header | Type | Required | Description |
|
|
|--------|------|----------|-------------|
|
|
| `X-API-Key` | string | Yes | Your API key |
|
|
| `Content-Type` | string | Yes | Must be `multipart/form-data` |
|
|
|
|
### Request Body
|
|
|
|
Submit as `multipart/form-data`:
|
|
|
|
| Field | Type | Required | Max Size | Description |
|
|
|-------|------|----------|----------|-------------|
|
|
| `image` | file | Yes | 10 MB | Image to process (JPEG, PNG, WebP) |
|
|
| `mask` | file | No | 10 MB | Optional mask (white = remove, black = keep) |
|
|
|
|
### Image Requirements
|
|
|
|
- **Formats**: JPEG, PNG, WebP
|
|
- **Max Dimension**: 4096px (width or height)
|
|
- **Max File Size**: 10 MB
|
|
- **Color Mode**: RGB (grayscale will be converted)
|
|
|
|
### Mask Requirements
|
|
|
|
- **Format**: PNG (8-bit grayscale or RGB)
|
|
- **Dimension**: Must match image size (auto-resized if different)
|
|
- **White (255)**: Areas to remove/inpaint
|
|
- **Black (0)**: Areas to preserve
|
|
- **Gray**: Partial inpainting (blend)
|
|
|
|
### Response
|
|
|
|
**Success (200 OK)**
|
|
|
|
Returns the processed image as `image/png`.
|
|
|
|
**Response Headers:**
|
|
|
|
| Header | Type | Description |
|
|
|--------|------|-------------|
|
|
| `Content-Type` | string | `image/png` |
|
|
| `X-Processing-Time` | float | Processing time in seconds |
|
|
| `X-Image-Size` | string | Original image dimensions (e.g., "1024x768") |
|
|
|
|
### Examples
|
|
|
|
#### cURL
|
|
|
|
```bash
|
|
# Basic usage (no mask)
|
|
curl -X POST https://api.iopaint.com/api/v1/remove-watermark \
|
|
-H "X-API-Key: $IOPAINT_API_KEY" \
|
|
-F "image=@/path/to/image.jpg" \
|
|
-o result.png
|
|
|
|
# With mask
|
|
curl -X POST https://api.iopaint.com/api/v1/remove-watermark \
|
|
-H "X-API-Key: $IOPAINT_API_KEY" \
|
|
-F "image=@/path/to/image.jpg" \
|
|
-F "mask=@/path/to/mask.png" \
|
|
-o result.png
|
|
|
|
# Verbose output
|
|
curl -X POST https://api.iopaint.com/api/v1/remove-watermark \
|
|
-H "X-API-Key: $IOPAINT_API_KEY" \
|
|
-F "image=@image.jpg" \
|
|
-v \
|
|
-o result.png
|
|
```
|
|
|
|
#### Python
|
|
|
|
```python
|
|
import requests
|
|
|
|
url = "https://api.iopaint.com/api/v1/remove-watermark"
|
|
headers = {"X-API-Key": "your_api_key_here"}
|
|
|
|
# Basic usage
|
|
with open("image.jpg", "rb") as f:
|
|
files = {"image": f}
|
|
response = requests.post(url, headers=headers, files=files)
|
|
|
|
if response.status_code == 200:
|
|
with open("result.png", "wb") as f:
|
|
f.write(response.content)
|
|
print(f"✓ Success! Processing time: {response.headers['X-Processing-Time']}s")
|
|
else:
|
|
print(f"✗ Error {response.status_code}: {response.json()}")
|
|
```
|
|
|
|
#### JavaScript/Node.js
|
|
|
|
```javascript
|
|
const FormData = require('form-data');
|
|
const fs = require('fs');
|
|
const axios = require('axios');
|
|
|
|
const form = new FormData();
|
|
form.append('image', fs.createReadStream('image.jpg'));
|
|
|
|
axios.post('https://api.iopaint.com/api/v1/remove-watermark', form, {
|
|
headers: {
|
|
'X-API-Key': process.env.IOPAINT_API_KEY,
|
|
...form.getHeaders()
|
|
},
|
|
responseType: 'arraybuffer'
|
|
})
|
|
.then(response => {
|
|
fs.writeFileSync('result.png', response.data);
|
|
console.log('✓ Success!');
|
|
})
|
|
.catch(error => {
|
|
console.error('✗ Error:', error.response?.status, error.response?.data);
|
|
});
|
|
```
|
|
|
|
#### PHP
|
|
|
|
```php
|
|
<?php
|
|
$ch = curl_init('https://api.iopaint.com/api/v1/remove-watermark');
|
|
|
|
curl_setopt($ch, CURLOPT_POST, true);
|
|
curl_setopt($ch, CURLOPT_POSTFIELDS, [
|
|
'image' => new CURLFile('/path/to/image.jpg')
|
|
]);
|
|
curl_setopt($ch, CURLOPT_HTTPHEADER, [
|
|
'X-API-Key: your_api_key_here'
|
|
]);
|
|
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
|
|
|
|
$result = curl_exec($ch);
|
|
$httpCode = curl_getinfo($ch, CURLINFO_HTTP_CODE);
|
|
curl_close($ch);
|
|
|
|
if ($httpCode == 200) {
|
|
file_put_contents('result.png', $result);
|
|
echo "✓ Success!\n";
|
|
} else {
|
|
echo "✗ Error: $httpCode\n";
|
|
}
|
|
?>
|
|
```
|
|
|
|
#### Go
|
|
|
|
```go
|
|
package main
|
|
|
|
import (
|
|
"bytes"
|
|
"io"
|
|
"mime/multipart"
|
|
"net/http"
|
|
"os"
|
|
)
|
|
|
|
func main() {
|
|
body := &bytes.Buffer{}
|
|
writer := multipart.NewWriter(body)
|
|
|
|
// Add image file
|
|
file, _ := os.Open("image.jpg")
|
|
defer file.Close()
|
|
part, _ := writer.CreateFormFile("image", "image.jpg")
|
|
io.Copy(part, file)
|
|
writer.Close()
|
|
|
|
// Create request
|
|
req, _ := http.NewRequest("POST", "https://api.iopaint.com/api/v1/remove-watermark", body)
|
|
req.Header.Set("X-API-Key", os.Getenv("IOPAINT_API_KEY"))
|
|
req.Header.Set("Content-Type", writer.FormDataContentType())
|
|
|
|
// Send request
|
|
client := &http.Client{}
|
|
resp, _ := client.Do(req)
|
|
defer resp.Body.Close()
|
|
|
|
// Save result
|
|
out, _ := os.Create("result.png")
|
|
defer out.Close()
|
|
io.Copy(out, resp.Body)
|
|
}
|
|
```
|
|
|
|
---
|
|
|
|
## 2. Health Check
|
|
|
|
Check the API service status and availability.
|
|
|
|
### Endpoint
|
|
|
|
```http
|
|
GET /api/v1/health
|
|
```
|
|
|
|
### Authentication
|
|
|
|
Not required.
|
|
|
|
### Response
|
|
|
|
**Success (200 OK)**
|
|
|
|
```json
|
|
{
|
|
"status": "healthy",
|
|
"model": "lama",
|
|
"device": "cuda",
|
|
"gpu_available": true
|
|
}
|
|
```
|
|
|
|
**Response Fields:**
|
|
|
|
| Field | Type | Description |
|
|
|-------|------|-------------|
|
|
| `status` | string | Service status: `healthy` or `unhealthy` |
|
|
| `model` | string | Current AI model name |
|
|
| `device` | string | Compute device: `cuda` (GPU) or `cpu` |
|
|
| `gpu_available` | boolean | GPU availability |
|
|
|
|
### Example
|
|
|
|
```bash
|
|
curl https://api.iopaint.com/api/v1/health
|
|
```
|
|
|
|
```python
|
|
import requests
|
|
|
|
response = requests.get("https://api.iopaint.com/api/v1/health")
|
|
print(response.json())
|
|
# Output: {'status': 'healthy', 'model': 'lama', 'device': 'cuda', 'gpu_available': True}
|
|
```
|
|
|
|
---
|
|
|
|
## 3. Usage Statistics
|
|
|
|
Retrieve your account usage statistics.
|
|
|
|
### Endpoint
|
|
|
|
```http
|
|
GET /api/v1/stats
|
|
```
|
|
|
|
### Authentication
|
|
|
|
Required. Include `X-API-Key` header.
|
|
|
|
### Response
|
|
|
|
**Success (200 OK)**
|
|
|
|
```json
|
|
{
|
|
"total": 1250,
|
|
"success": 1230,
|
|
"failed": 20,
|
|
"total_processing_time": 1845.5,
|
|
"avg_processing_time": 1.5
|
|
}
|
|
```
|
|
|
|
**Response Fields:**
|
|
|
|
| Field | Type | Description |
|
|
|-------|------|-------------|
|
|
| `total` | integer | Total requests made |
|
|
| `success` | integer | Successful requests |
|
|
| `failed` | integer | Failed requests |
|
|
| `total_processing_time` | float | Cumulative processing time (seconds) |
|
|
| `avg_processing_time` | float | Average processing time (seconds) |
|
|
|
|
### Example
|
|
|
|
```bash
|
|
curl https://api.iopaint.com/api/v1/stats \
|
|
-H "X-API-Key: $IOPAINT_API_KEY"
|
|
```
|
|
|
|
```python
|
|
import requests
|
|
|
|
headers = {"X-API-Key": "your_api_key_here"}
|
|
response = requests.get("https://api.iopaint.com/api/v1/stats", headers=headers)
|
|
stats = response.json()
|
|
|
|
print(f"Total requests: {stats['total']}")
|
|
print(f"Success rate: {stats['success'] / stats['total'] * 100:.2f}%")
|
|
print(f"Average time: {stats['avg_processing_time']:.2f}s")
|
|
```
|
|
|
|
---
|
|
|
|
## Models
|
|
|
|
### LaMa (Current)
|
|
|
|
**Large Mask Inpainting** - Fast and efficient inpainting model.
|
|
|
|
| Property | Value |
|
|
|----------|-------|
|
|
| **Name** | `lama` |
|
|
| **Speed** | ⚡⚡⚡⚡⚡ (1-2s for 1024x1024) |
|
|
| **Quality** | ⭐⭐⭐⭐ |
|
|
| **VRAM** | ~1GB |
|
|
| **Best For** | Watermark removal, object removal |
|
|
|
|
### Future Models (Coming Soon)
|
|
|
|
| Model | Speed | Quality | VRAM | Use Case |
|
|
|-------|-------|---------|------|----------|
|
|
| **SD Inpainting** | ⚡⚡⚡ | ⭐⭐⭐⭐⭐ | ~4GB | Creative editing |
|
|
| **SDXL Inpainting** | ⚡⚡ | ⭐⭐⭐⭐⭐ | ~8GB | Professional work |
|
|
|
|
---
|
|
|
|
## Error Handling
|
|
|
|
### Error Response Format
|
|
|
|
All errors return a JSON object with the following structure:
|
|
|
|
```json
|
|
{
|
|
"error": "ErrorType",
|
|
"detail": "Human-readable error message",
|
|
"status_code": 400
|
|
}
|
|
```
|
|
|
|
### HTTP Status Codes
|
|
|
|
| Code | Status | Description |
|
|
|------|--------|-------------|
|
|
| `200` | OK | Request successful |
|
|
| `400` | Bad Request | Invalid request parameters |
|
|
| `401` | Unauthorized | Missing or invalid API key |
|
|
| `413` | Payload Too Large | File exceeds size limit |
|
|
| `429` | Too Many Requests | Rate limit exceeded |
|
|
| `500` | Internal Server Error | Server-side error |
|
|
| `503` | Service Unavailable | Service temporarily unavailable |
|
|
|
|
### Error Types
|
|
|
|
#### 401 Unauthorized
|
|
|
|
**Missing API Key:**
|
|
|
|
```json
|
|
{
|
|
"error": "Unauthorized",
|
|
"detail": "Missing API Key. Please provide X-API-Key header.",
|
|
"status_code": 401
|
|
}
|
|
```
|
|
|
|
**Invalid API Key:**
|
|
|
|
```json
|
|
{
|
|
"error": "Unauthorized",
|
|
"detail": "Invalid API Key",
|
|
"status_code": 401
|
|
}
|
|
```
|
|
|
|
#### 400 Bad Request
|
|
|
|
**Invalid Image Format:**
|
|
|
|
```json
|
|
{
|
|
"error": "Bad Request",
|
|
"detail": "Invalid image format: cannot identify image file",
|
|
"status_code": 400
|
|
}
|
|
```
|
|
|
|
**Image Too Large:**
|
|
|
|
```json
|
|
{
|
|
"error": "Bad Request",
|
|
"detail": "Image too large. Max dimension: 4096px",
|
|
"status_code": 400
|
|
}
|
|
```
|
|
|
|
**File Too Large:**
|
|
|
|
```json
|
|
{
|
|
"error": "Bad Request",
|
|
"detail": "Image too large. Max size: 10MB",
|
|
"status_code": 400
|
|
}
|
|
```
|
|
|
|
#### 429 Rate Limit Exceeded
|
|
|
|
```json
|
|
{
|
|
"error": "Too Many Requests",
|
|
"detail": "Rate limit exceeded. Please try again later.",
|
|
"status_code": 429
|
|
}
|
|
```
|
|
|
|
**Headers:**
|
|
|
|
```http
|
|
X-RateLimit-Limit: 10
|
|
X-RateLimit-Remaining: 0
|
|
X-RateLimit-Reset: 1672531200
|
|
```
|
|
|
|
#### 500 Internal Server Error
|
|
|
|
```json
|
|
{
|
|
"error": "Internal Server Error",
|
|
"detail": "Processing failed: CUDA out of memory",
|
|
"status_code": 500
|
|
}
|
|
```
|
|
|
|
### Error Handling Best Practices
|
|
|
|
```python
|
|
import requests
|
|
import time
|
|
|
|
def remove_watermark_with_retry(image_path, max_retries=3):
|
|
"""Remove watermark with exponential backoff retry"""
|
|
url = "https://api.iopaint.com/api/v1/remove-watermark"
|
|
headers = {"X-API-Key": os.getenv("IOPAINT_API_KEY")}
|
|
|
|
for attempt in range(max_retries):
|
|
try:
|
|
with open(image_path, "rb") as f:
|
|
response = requests.post(
|
|
url,
|
|
headers=headers,
|
|
files={"image": f},
|
|
timeout=120
|
|
)
|
|
|
|
if response.status_code == 200:
|
|
return response.content
|
|
|
|
elif response.status_code == 429:
|
|
# Rate limit - exponential backoff
|
|
wait_time = 2 ** attempt
|
|
print(f"Rate limited. Waiting {wait_time}s...")
|
|
time.sleep(wait_time)
|
|
continue
|
|
|
|
elif response.status_code in [500, 503]:
|
|
# Server error - retry
|
|
if attempt < max_retries - 1:
|
|
time.sleep(2 ** attempt)
|
|
continue
|
|
else:
|
|
raise Exception(f"Server error: {response.json()}")
|
|
|
|
else:
|
|
# Client error - don't retry
|
|
raise Exception(f"Error {response.status_code}: {response.json()}")
|
|
|
|
except requests.Timeout:
|
|
if attempt < max_retries - 1:
|
|
print(f"Timeout. Retrying... ({attempt + 1}/{max_retries})")
|
|
continue
|
|
else:
|
|
raise
|
|
|
|
raise Exception("Max retries exceeded")
|
|
```
|
|
|
|
---
|
|
|
|
## Rate Limiting
|
|
|
|
### Rate Limit Rules
|
|
|
|
| Plan | Rate Limit | Burst | Quota |
|
|
|------|------------|-------|-------|
|
|
| **Free** | 2 req/min | 5 | 10/day |
|
|
| **Basic** | 10 req/min | 20 | 3,000/month |
|
|
| **Pro** | 30 req/min | 60 | 20,000/month |
|
|
| **Enterprise** | Custom | Custom | Custom |
|
|
|
|
### Rate Limit Headers
|
|
|
|
Every response includes rate limit information:
|
|
|
|
```http
|
|
X-RateLimit-Limit: 10
|
|
X-RateLimit-Remaining: 7
|
|
X-RateLimit-Reset: 1672531200
|
|
```
|
|
|
|
| Header | Description |
|
|
|--------|-------------|
|
|
| `X-RateLimit-Limit` | Maximum requests per time window |
|
|
| `X-RateLimit-Remaining` | Remaining requests in current window |
|
|
| `X-RateLimit-Reset` | Unix timestamp when limit resets |
|
|
|
|
### Handling Rate Limits
|
|
|
|
```python
|
|
import requests
|
|
import time
|
|
|
|
def wait_for_rate_limit_reset(response):
|
|
"""Wait until rate limit resets"""
|
|
if response.status_code == 429:
|
|
reset_time = int(response.headers.get('X-RateLimit-Reset', 0))
|
|
current_time = int(time.time())
|
|
wait_time = max(0, reset_time - current_time)
|
|
|
|
print(f"Rate limited. Waiting {wait_time}s for reset...")
|
|
time.sleep(wait_time + 1) # Add 1s buffer
|
|
return True
|
|
return False
|
|
```
|
|
|
|
### Best Practices
|
|
|
|
1. **Check remaining quota** before making requests
|
|
2. **Implement exponential backoff** for retries
|
|
3. **Cache results** to avoid duplicate requests
|
|
4. **Use batch endpoints** (when available) for multiple images
|
|
5. **Upgrade your plan** if consistently hitting limits
|
|
|
|
---
|
|
|
|
## Best Practices
|
|
|
|
### Performance Optimization
|
|
|
|
#### 1. Image Preprocessing
|
|
|
|
```python
|
|
from PIL import Image
|
|
|
|
def optimize_image(image_path, max_size=2048):
|
|
"""Resize large images before upload"""
|
|
img = Image.open(image_path)
|
|
|
|
# Check if resize needed
|
|
if max(img.size) > max_size:
|
|
ratio = max_size / max(img.size)
|
|
new_size = tuple(int(dim * ratio) for dim in img.size)
|
|
img = img.resize(new_size, Image.LANCZOS)
|
|
|
|
# Convert to RGB if needed
|
|
if img.mode != 'RGB':
|
|
img = img.convert('RGB')
|
|
|
|
# Save optimized
|
|
output = "optimized.jpg"
|
|
img.save(output, quality=95, optimize=True)
|
|
return output
|
|
```
|
|
|
|
#### 2. Concurrent Processing
|
|
|
|
```python
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
import requests
|
|
|
|
def process_batch(image_paths, api_key, max_workers=4):
|
|
"""Process multiple images concurrently"""
|
|
def process_one(path):
|
|
headers = {"X-API-Key": api_key}
|
|
with open(path, "rb") as f:
|
|
response = requests.post(
|
|
"https://api.iopaint.com/api/v1/remove-watermark",
|
|
headers=headers,
|
|
files={"image": f}
|
|
)
|
|
return path, response
|
|
|
|
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
results = list(executor.map(process_one, image_paths))
|
|
|
|
return results
|
|
```
|
|
|
|
#### 3. Connection Reuse
|
|
|
|
```python
|
|
import requests
|
|
|
|
# Reuse session for multiple requests
|
|
session = requests.Session()
|
|
session.headers.update({"X-API-Key": api_key})
|
|
|
|
for image_path in image_paths:
|
|
with open(image_path, "rb") as f:
|
|
response = session.post(
|
|
"https://api.iopaint.com/api/v1/remove-watermark",
|
|
files={"image": f}
|
|
)
|
|
```
|
|
|
|
### Security
|
|
|
|
#### Environment Variables
|
|
|
|
```bash
|
|
# .env file
|
|
IOPAINT_API_KEY=sk_live_1234567890abcdef
|
|
|
|
# .gitignore
|
|
.env
|
|
```
|
|
|
|
```python
|
|
import os
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
api_key = os.getenv("IOPAINT_API_KEY")
|
|
```
|
|
|
|
#### API Key Rotation
|
|
|
|
```python
|
|
# Rotate keys periodically
|
|
def rotate_api_key():
|
|
old_key = os.getenv("IOPAINT_API_KEY")
|
|
new_key = generate_new_key() # From dashboard
|
|
|
|
# Test new key
|
|
test_response = requests.get(
|
|
"https://api.iopaint.com/api/v1/health",
|
|
headers={"X-API-Key": new_key}
|
|
)
|
|
|
|
if test_response.status_code == 200:
|
|
# Update environment
|
|
update_env("IOPAINT_API_KEY", new_key)
|
|
# Revoke old key from dashboard
|
|
revoke_key(old_key)
|
|
```
|
|
|
|
### Cost Optimization
|
|
|
|
#### 1. Cache Results
|
|
|
|
```python
|
|
import hashlib
|
|
import os
|
|
|
|
def get_cached_result(image_path):
|
|
"""Check if result already cached"""
|
|
# Generate cache key from file content
|
|
with open(image_path, "rb") as f:
|
|
file_hash = hashlib.md5(f.read()).hexdigest()
|
|
|
|
cache_path = f"cache/{file_hash}.png"
|
|
if os.path.exists(cache_path):
|
|
return cache_path
|
|
return None
|
|
|
|
def process_with_cache(image_path, api_key):
|
|
"""Process with caching"""
|
|
# Check cache first
|
|
cached = get_cached_result(image_path)
|
|
if cached:
|
|
print(f"✓ Using cached result: {cached}")
|
|
return cached
|
|
|
|
# Process via API
|
|
result = remove_watermark(image_path, api_key)
|
|
|
|
# Save to cache
|
|
with open(image_path, "rb") as f:
|
|
file_hash = hashlib.md5(f.read()).hexdigest()
|
|
cache_path = f"cache/{file_hash}.png"
|
|
with open(cache_path, "wb") as f:
|
|
f.write(result)
|
|
|
|
return cache_path
|
|
```
|
|
|
|
#### 2. Monitor Usage
|
|
|
|
```python
|
|
def check_quota_before_request(api_key):
|
|
"""Check quota before making expensive requests"""
|
|
headers = {"X-API-Key": api_key}
|
|
response = requests.get(
|
|
"https://api.iopaint.com/api/v1/stats",
|
|
headers=headers
|
|
)
|
|
|
|
stats = response.json()
|
|
quota_used = stats['total']
|
|
plan_limit = 3000 # Basic plan
|
|
|
|
remaining = plan_limit - quota_used
|
|
if remaining < 100:
|
|
print(f"⚠️ Warning: Only {remaining} requests remaining!")
|
|
|
|
return remaining > 0
|
|
```
|
|
|
|
---
|
|
|
|
## SDKs & Libraries
|
|
|
|
### Official SDKs
|
|
|
|
#### Python
|
|
|
|
```bash
|
|
pip install iopaint-sdk
|
|
```
|
|
|
|
```python
|
|
from iopaint import IOPaintClient
|
|
|
|
client = IOPaintClient(api_key="your_api_key")
|
|
|
|
# Simple usage
|
|
result = client.remove_watermark("image.jpg")
|
|
|
|
# With options
|
|
result = client.remove_watermark(
|
|
image="image.jpg",
|
|
mask="mask.png",
|
|
output="result.png"
|
|
)
|
|
|
|
# Batch processing
|
|
results = client.batch_process(
|
|
images=["img1.jpg", "img2.jpg"],
|
|
output_dir="./results"
|
|
)
|
|
```
|
|
|
|
#### JavaScript/TypeScript
|
|
|
|
```bash
|
|
npm install iopaint-sdk
|
|
```
|
|
|
|
```javascript
|
|
const { IOPaintClient } = require('iopaint-sdk');
|
|
|
|
const client = new IOPaintClient({
|
|
apiKey: process.env.IOPAINT_API_KEY
|
|
});
|
|
|
|
// Simple usage
|
|
await client.removeWatermark('image.jpg', 'result.png');
|
|
|
|
// With mask
|
|
await client.removeWatermark('image.jpg', 'result.png', {
|
|
mask: 'mask.png'
|
|
});
|
|
```
|
|
|
|
### Community Libraries
|
|
|
|
| Language | Library | Author |
|
|
|----------|---------|--------|
|
|
| Go | `iopaint-go` | Community |
|
|
| Ruby | `iopaint-rb` | Community |
|
|
| Java | `iopaint-java` | Community |
|
|
| PHP | `iopaint-php` | Community |
|
|
|
|
---
|
|
|
|
## Changelog
|
|
|
|
### v1.0.0 (2025-11-28)
|
|
|
|
**Initial Release**
|
|
|
|
- ✨ `/api/v1/remove-watermark` endpoint
|
|
- ✨ `/api/v1/health` endpoint
|
|
- ✨ `/api/v1/stats` endpoint
|
|
- ✨ API key authentication
|
|
- ✨ Rate limiting
|
|
- ✨ Support for JPEG, PNG, WebP
|
|
- ✨ Optional mask support
|
|
- ✨ Processing time metrics
|
|
|
|
### Coming Soon
|
|
|
|
- 🔜 `/api/v1/batch` - Batch processing endpoint
|
|
- 🔜 `/api/v1/detect` - Automatic watermark detection
|
|
- 🔜 Webhook callbacks for async processing
|
|
- 🔜 Additional models (SD, SDXL)
|
|
- 🔜 Custom model training
|
|
|
|
---
|
|
|
|
## Support
|
|
|
|
### Resources
|
|
|
|
- **API Status**: [status.iopaint.com](https://status.iopaint.com)
|
|
- **Dashboard**: [iopaint.com/dashboard](https://iopaint.com/dashboard)
|
|
- **Documentation**: [docs.iopaint.com](https://docs.iopaint.com)
|
|
- **GitHub**: [github.com/let5sne/IOPaint](https://github.com/let5sne/IOPaint)
|
|
|
|
### Contact
|
|
|
|
- **Email**: support@iopaint.com
|
|
- **Discord**: [discord.gg/iopaint](https://discord.gg/iopaint)
|
|
- **Issues**: [GitHub Issues](https://github.com/let5sne/IOPaint/issues)
|
|
|
|
### SLA (Service Level Agreement)
|
|
|
|
| Plan | Uptime | Support Response |
|
|
|------|--------|------------------|
|
|
| Free | 95% | Community |
|
|
| Basic | 99% | 48 hours |
|
|
| Pro | 99.5% | 24 hours |
|
|
| Enterprise | 99.9% | 4 hours |
|
|
|
|
---
|
|
|
|
## Legal
|
|
|
|
### Terms of Service
|
|
|
|
By using the IOPaint API, you agree to our [Terms of Service](https://iopaint.com/terms).
|
|
|
|
### Privacy Policy
|
|
|
|
We respect your privacy. See our [Privacy Policy](https://iopaint.com/privacy).
|
|
|
|
### Data Processing
|
|
|
|
- Images are processed in memory and not stored
|
|
- Uploaded images are deleted immediately after processing
|
|
- We do not train models on your data
|
|
- Logs contain only metadata (no image content)
|
|
|
|
### Usage Restrictions
|
|
|
|
**Allowed:**
|
|
- ✅ Removing watermarks from your own content
|
|
- ✅ Restoring old photos
|
|
- ✅ Object removal for creative projects
|
|
- ✅ Commercial use (with appropriate plan)
|
|
|
|
**Prohibited:**
|
|
- ❌ Removing copyright protection
|
|
- ❌ Processing illegal content
|
|
- ❌ Violating third-party rights
|
|
- ❌ Automated scraping without permission
|
|
|
|
---
|
|
|
|
**© 2025 IOPaint. All rights reserved.**
|
|
|
|
*Last updated: 2025-11-28*
|