feat(compaction): apply staged pruning
This commit is contained in:
@@ -1,12 +1,16 @@
|
||||
import type { AgentMessage } from "@mariozechner/pi-agent-core";
|
||||
import type { ExtensionAPI, ExtensionContext, FileOperations } from "@mariozechner/pi-coding-agent";
|
||||
import { estimateTokens, generateSummary } from "@mariozechner/pi-coding-agent";
|
||||
|
||||
import { DEFAULT_CONTEXT_TOKENS } from "../defaults.js";
|
||||
|
||||
const BASE_CHUNK_RATIO = 0.4;
|
||||
const MIN_CHUNK_RATIO = 0.15;
|
||||
const SAFETY_MARGIN = 1.2; // 20% buffer for estimateTokens() inaccuracy
|
||||
import {
|
||||
BASE_CHUNK_RATIO,
|
||||
MIN_CHUNK_RATIO,
|
||||
SAFETY_MARGIN,
|
||||
computeAdaptiveChunkRatio,
|
||||
estimateMessagesTokens,
|
||||
isOversizedForSummary,
|
||||
pruneHistoryForContextShare,
|
||||
resolveContextWindowTokens,
|
||||
summarizeInStages,
|
||||
} from "../compaction.js";
|
||||
const FALLBACK_SUMMARY =
|
||||
"Summary unavailable due to context limits. Older messages were truncated.";
|
||||
const TURN_PREFIX_INSTRUCTIONS =
|
||||
@@ -129,175 +133,6 @@ function formatFileOperations(readFiles: string[], modifiedFiles: string[]): str
|
||||
return `\n\n${sections.join("\n\n")}`;
|
||||
}
|
||||
|
||||
function chunkMessages(messages: AgentMessage[], maxTokens: number): AgentMessage[][] {
|
||||
if (messages.length === 0) return [];
|
||||
|
||||
const chunks: AgentMessage[][] = [];
|
||||
let currentChunk: AgentMessage[] = [];
|
||||
let currentTokens = 0;
|
||||
|
||||
for (const message of messages) {
|
||||
const messageTokens = estimateTokens(message);
|
||||
if (currentChunk.length > 0 && currentTokens + messageTokens > maxTokens) {
|
||||
chunks.push(currentChunk);
|
||||
currentChunk = [];
|
||||
currentTokens = 0;
|
||||
}
|
||||
|
||||
currentChunk.push(message);
|
||||
currentTokens += messageTokens;
|
||||
|
||||
if (messageTokens > maxTokens) {
|
||||
// Split oversized messages to avoid unbounded chunk growth.
|
||||
chunks.push(currentChunk);
|
||||
currentChunk = [];
|
||||
currentTokens = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (currentChunk.length > 0) {
|
||||
chunks.push(currentChunk);
|
||||
}
|
||||
|
||||
return chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute adaptive chunk ratio based on average message size.
|
||||
* When messages are large, we use smaller chunks to avoid exceeding model limits.
|
||||
*/
|
||||
function computeAdaptiveChunkRatio(messages: AgentMessage[], contextWindow: number): number {
|
||||
if (messages.length === 0) return BASE_CHUNK_RATIO;
|
||||
|
||||
const totalTokens = messages.reduce((sum, m) => sum + estimateTokens(m), 0);
|
||||
const avgTokens = totalTokens / messages.length;
|
||||
|
||||
// Apply safety margin to account for estimation inaccuracy
|
||||
const safeAvgTokens = avgTokens * SAFETY_MARGIN;
|
||||
const avgRatio = safeAvgTokens / contextWindow;
|
||||
|
||||
// If average message is > 10% of context, reduce chunk ratio
|
||||
if (avgRatio > 0.1) {
|
||||
const reduction = Math.min(avgRatio * 2, BASE_CHUNK_RATIO - MIN_CHUNK_RATIO);
|
||||
return Math.max(MIN_CHUNK_RATIO, BASE_CHUNK_RATIO - reduction);
|
||||
}
|
||||
|
||||
return BASE_CHUNK_RATIO;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if a single message is too large to summarize.
|
||||
* If single message > 50% of context, it can't be summarized safely.
|
||||
*/
|
||||
function isOversizedForSummary(msg: AgentMessage, contextWindow: number): boolean {
|
||||
const tokens = estimateTokens(msg) * SAFETY_MARGIN;
|
||||
return tokens > contextWindow * 0.5;
|
||||
}
|
||||
|
||||
async function summarizeChunks(params: {
|
||||
messages: AgentMessage[];
|
||||
model: NonNullable<ExtensionContext["model"]>;
|
||||
apiKey: string;
|
||||
signal: AbortSignal;
|
||||
reserveTokens: number;
|
||||
maxChunkTokens: number;
|
||||
customInstructions?: string;
|
||||
previousSummary?: string;
|
||||
}): Promise<string> {
|
||||
if (params.messages.length === 0) {
|
||||
return params.previousSummary ?? "No prior history.";
|
||||
}
|
||||
|
||||
const chunks = chunkMessages(params.messages, params.maxChunkTokens);
|
||||
let summary = params.previousSummary;
|
||||
|
||||
for (const chunk of chunks) {
|
||||
summary = await generateSummary(
|
||||
chunk,
|
||||
params.model,
|
||||
params.reserveTokens,
|
||||
params.apiKey,
|
||||
params.signal,
|
||||
params.customInstructions,
|
||||
summary,
|
||||
);
|
||||
}
|
||||
|
||||
return summary ?? "No prior history.";
|
||||
}
|
||||
|
||||
/**
|
||||
* Summarize with progressive fallback for handling oversized messages.
|
||||
* If full summarization fails, tries partial summarization excluding oversized messages.
|
||||
*/
|
||||
async function summarizeWithFallback(params: {
|
||||
messages: AgentMessage[];
|
||||
model: NonNullable<ExtensionContext["model"]>;
|
||||
apiKey: string;
|
||||
signal: AbortSignal;
|
||||
reserveTokens: number;
|
||||
maxChunkTokens: number;
|
||||
contextWindow: number;
|
||||
customInstructions?: string;
|
||||
previousSummary?: string;
|
||||
}): Promise<string> {
|
||||
const { messages, contextWindow } = params;
|
||||
|
||||
if (messages.length === 0) {
|
||||
return params.previousSummary ?? "No prior history.";
|
||||
}
|
||||
|
||||
// Try full summarization first
|
||||
try {
|
||||
return await summarizeChunks(params);
|
||||
} catch (fullError) {
|
||||
console.warn(
|
||||
`Full summarization failed, trying partial: ${
|
||||
fullError instanceof Error ? fullError.message : String(fullError)
|
||||
}`,
|
||||
);
|
||||
}
|
||||
|
||||
// Fallback 1: Summarize only small messages, note oversized ones
|
||||
const smallMessages: AgentMessage[] = [];
|
||||
const oversizedNotes: string[] = [];
|
||||
|
||||
for (const msg of messages) {
|
||||
if (isOversizedForSummary(msg, contextWindow)) {
|
||||
const role = (msg as { role?: string }).role ?? "message";
|
||||
const tokens = estimateTokens(msg);
|
||||
oversizedNotes.push(
|
||||
`[Large ${role} (~${Math.round(tokens / 1000)}K tokens) omitted from summary]`,
|
||||
);
|
||||
} else {
|
||||
smallMessages.push(msg);
|
||||
}
|
||||
}
|
||||
|
||||
if (smallMessages.length > 0) {
|
||||
try {
|
||||
const partialSummary = await summarizeChunks({
|
||||
...params,
|
||||
messages: smallMessages,
|
||||
});
|
||||
const notes = oversizedNotes.length > 0 ? `\n\n${oversizedNotes.join("\n")}` : "";
|
||||
return partialSummary + notes;
|
||||
} catch (partialError) {
|
||||
console.warn(
|
||||
`Partial summarization also failed: ${
|
||||
partialError instanceof Error ? partialError.message : String(partialError)
|
||||
}`,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Final fallback: Just note what was there
|
||||
return (
|
||||
`Context contained ${messages.length} messages (${oversizedNotes.length} oversized). ` +
|
||||
`Summary unavailable due to size limits.`
|
||||
);
|
||||
}
|
||||
|
||||
export default function compactionSafeguardExtension(api: ExtensionAPI): void {
|
||||
api.on("session_before_compact", async (event, ctx) => {
|
||||
const { preparation, customInstructions, signal } = event;
|
||||
@@ -335,19 +170,48 @@ export default function compactionSafeguardExtension(api: ExtensionAPI): void {
|
||||
}
|
||||
|
||||
try {
|
||||
const contextWindowTokens = Math.max(
|
||||
1,
|
||||
Math.floor(model.contextWindow ?? DEFAULT_CONTEXT_TOKENS),
|
||||
);
|
||||
const contextWindowTokens = resolveContextWindowTokens(model);
|
||||
const turnPrefixMessages = preparation.turnPrefixMessages ?? [];
|
||||
let messagesToSummarize = preparation.messagesToSummarize;
|
||||
|
||||
const tokensBefore =
|
||||
typeof preparation.tokensBefore === "number" && Number.isFinite(preparation.tokensBefore)
|
||||
? preparation.tokensBefore
|
||||
: undefined;
|
||||
if (tokensBefore !== undefined) {
|
||||
const summarizableTokens =
|
||||
estimateMessagesTokens(messagesToSummarize) + estimateMessagesTokens(turnPrefixMessages);
|
||||
const newContentTokens = Math.max(0, Math.floor(tokensBefore - summarizableTokens));
|
||||
const maxHistoryTokens = Math.floor(contextWindowTokens * 0.5);
|
||||
|
||||
if (newContentTokens > maxHistoryTokens) {
|
||||
const pruned = pruneHistoryForContextShare({
|
||||
messages: messagesToSummarize,
|
||||
maxContextTokens: contextWindowTokens,
|
||||
maxHistoryShare: 0.5,
|
||||
parts: 2,
|
||||
});
|
||||
if (pruned.droppedChunks > 0) {
|
||||
const newContentRatio = (newContentTokens / contextWindowTokens) * 100;
|
||||
console.warn(
|
||||
`Compaction safeguard: new content uses ${newContentRatio.toFixed(
|
||||
1,
|
||||
)}% of context; dropped ${pruned.droppedChunks} older chunk(s) ` +
|
||||
`(${pruned.droppedMessages} messages) to fit history budget.`,
|
||||
);
|
||||
messagesToSummarize = pruned.messages;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Use adaptive chunk ratio based on message sizes
|
||||
const allMessages = [...preparation.messagesToSummarize, ...preparation.turnPrefixMessages];
|
||||
const allMessages = [...messagesToSummarize, ...turnPrefixMessages];
|
||||
const adaptiveRatio = computeAdaptiveChunkRatio(allMessages, contextWindowTokens);
|
||||
const maxChunkTokens = Math.max(1, Math.floor(contextWindowTokens * adaptiveRatio));
|
||||
const reserveTokens = Math.max(1, Math.floor(preparation.settings.reserveTokens));
|
||||
|
||||
const historySummary = await summarizeWithFallback({
|
||||
messages: preparation.messagesToSummarize,
|
||||
const historySummary = await summarizeInStages({
|
||||
messages: messagesToSummarize,
|
||||
model,
|
||||
apiKey,
|
||||
signal,
|
||||
@@ -359,9 +223,9 @@ export default function compactionSafeguardExtension(api: ExtensionAPI): void {
|
||||
});
|
||||
|
||||
let summary = historySummary;
|
||||
if (preparation.isSplitTurn && preparation.turnPrefixMessages.length > 0) {
|
||||
const prefixSummary = await summarizeWithFallback({
|
||||
messages: preparation.turnPrefixMessages,
|
||||
if (preparation.isSplitTurn && turnPrefixMessages.length > 0) {
|
||||
const prefixSummary = await summarizeInStages({
|
||||
messages: turnPrefixMessages,
|
||||
model,
|
||||
apiKey,
|
||||
signal,
|
||||
@@ -369,6 +233,7 @@ export default function compactionSafeguardExtension(api: ExtensionAPI): void {
|
||||
maxChunkTokens,
|
||||
contextWindow: contextWindowTokens,
|
||||
customInstructions: TURN_PREFIX_INSTRUCTIONS,
|
||||
previousSummary: undefined,
|
||||
});
|
||||
summary = `${historySummary}\n\n---\n\n**Turn Context (split turn):**\n\n${prefixSummary}`;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user