docs: add local models guide

This commit is contained in:
Peter Steinberger
2026-01-12 16:50:37 +00:00
parent adaa30c73a
commit 717a259056
3 changed files with 99 additions and 42 deletions

View File

@@ -1813,48 +1813,7 @@ Notes:
### Local models (LM Studio) — recommended setup
Best current local setup (what were running): **MiniMax M2.1** on a powerful local machine
via **LM Studio** using the **Responses API**.
```json5
{
agents: {
defaults: {
model: { primary: "lmstudio/minimax-m2.1-gs32" },
models: {
"anthropic/claude-opus-4-5": { alias: "Opus" },
"lmstudio/minimax-m2.1-gs32": { alias: "Minimax" }
}
}
},
models: {
mode: "merge",
providers: {
lmstudio: {
baseUrl: "http://127.0.0.1:1234/v1",
apiKey: "lmstudio",
api: "openai-responses",
models: [
{
id: "minimax-m2.1-gs32",
name: "MiniMax M2.1 GS32",
reasoning: false,
input: ["text"],
cost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0 },
contextWindow: 196608,
maxTokens: 8192
}
]
}
}
}
}
```
Notes:
- LM Studio must have the model loaded and the local server enabled (default URL above).
- Responses API enables clean reasoning/output separation; WhatsApp sees only final text.
- Adjust `contextWindow`/`maxTokens` if your LM Studio context length differs.
See [/gateway/local-models](/gateway/local-models) for the current local guidance. TL;DR: run MiniMax M2.1 via LM Studio Responses API on serious hardware; keep hosted models merged for fallback.
### MiniMax M2.1

View File

@@ -0,0 +1,94 @@
---
summary: "Run Clawdbot on local LLMs (LM Studio, vLLM, LiteLLM, custom OpenAI endpoints)"
read_when:
- You want to serve models from your own GPU box
- You are wiring LM Studio or an OpenAI-compatible proxy
- You need the safest local model guidance
---
# Local models
Local is doable, but Clawdbot expects large context + strong defenses against prompt injection. Small cards truncate context and leak safety. Aim high: **≥2 maxed-out Mac Studios or equivalent GPU rig (~$30k+)**. A single **24 GB** GPU works only for lighter prompts with higher latency.
## Recommended: LM Studio + MiniMax M2.1 (Responses API)
Best current local stack. Load MiniMax M2.1 in LM Studio, enable the local server (default `http://127.0.0.1:1234`), and use Responses API to keep reasoning separate from final text.
```json5
{
agents: {
defaults: {
model: { primary: "lmstudio/minimax-m2.1-gs32" },
models: {
"anthropic/claude-opus-4-5": { alias: "Opus" },
"lmstudio/minimax-m2.1-gs32": { alias: "Minimax" }
}
}
},
models: {
mode: "merge",
providers: {
lmstudio: {
baseUrl: "http://127.0.0.1:1234/v1",
apiKey: "lmstudio",
api: "openai-responses",
models: [
{
id: "minimax-m2.1-gs32",
name: "MiniMax M2.1 GS32",
reasoning: false,
input: ["text"],
cost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0 },
contextWindow: 196608,
maxTokens: 8192
}
]
}
}
}
}
```
**Setup checklist**
- Install LM Studio: https://lmstudio.ai
- In LM Studio, download MiniMax M2.1, start the server, confirm `http://127.0.0.1:1234/v1/models` lists it.
- Keep the model loaded; cold-load adds startup latency.
- Adjust `contextWindow`/`maxTokens` if your LM Studio build differs.
- For WhatsApp, stick to Responses API so only final text is sent.
## Other OpenAI-compatible local proxies
vLLM, LiteLLM, OAI-proxy, or custom gateways work if they expose an OpenAI-style `/v1` endpoint. Replace the provider block above with your endpoint and model ID:
```json5
{
models: {
mode: "merge",
providers: {
local: {
baseUrl: "http://127.0.0.1:8000/v1",
apiKey: "sk-local",
api: "openai-responses",
models: [
{
id: "my-local-model",
name: "Local Model",
reasoning: false,
input: ["text"],
cost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0 },
contextWindow: 120000,
maxTokens: 8192
}
]
}
}
}
}
```
Keep `models.mode: "merge"` so hosted models stay available as fallbacks.
## Troubleshooting
- Gateway can reach the proxy? `curl http://127.0.0.1:1234/v1/models`.
- LM Studio model unloaded? Reload; cold start is a common “hanging” cause.
- Context errors? Lower `contextWindow` or raise your server limit.
- Safety: local models skip provider-side filters; keep agents narrow and compaction on to limit prompt injection blast radius.

View File

@@ -116,6 +116,10 @@ Not currently. Clawdbot doesnt ship a Bedrock provider today. If you must use
Clawdbot supports **OpenAI Code (Codex)** via OAuth or by reusing your Codex CLI login (`~/.codex/auth.json`). The wizard can import the CLI login or run the OAuth flow and will set the default model to `openai-codex/gpt-5.2` when appropriate. See [Model providers](/concepts/model-providers) and [Wizard](/start/wizard).
### Is a local model OK for casual chats?
Usually no. Clawdbot needs large context + strong safety; small cards truncate. See [/gateway/local-models](/gateway/local-models) for hardware expectations and the LM Studio MiniMax M2.1 setup.
### Can I use Bun?
Bun is supported for faster TypeScript execution, but **WhatsApp requires Node** in this ecosystem. The wizard lets you pick the runtime; choose **Node** if you use WhatsApp.