feat(memory): add gemini batches + safe reindex

Co-authored-by: Gustavo Madeira Santana <gumadeiras@gmail.com>
This commit is contained in:
Peter Steinberger
2026-01-18 15:29:30 +00:00
parent be7191879a
commit 9464774133
5 changed files with 1472 additions and 715 deletions

407
src/memory/batch-gemini.ts Normal file
View File

@@ -0,0 +1,407 @@
import { createSubsystemLogger } from "../logging.js";
import type { GeminiEmbeddingClient } from "./embeddings-gemini.js";
import { hashText } from "./internal.js";
export type GeminiBatchRequest = {
custom_id: string;
content: { parts: Array<{ text: string }> };
taskType: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY";
};
export type GeminiBatchStatus = {
name?: string;
state?: string;
outputConfig?: { file?: string; fileId?: string };
metadata?: {
output?: {
responsesFile?: string;
};
};
error?: { message?: string };
};
export type GeminiBatchOutputLine = {
key?: string;
custom_id?: string;
request_id?: string;
embedding?: { values?: number[] };
response?: {
embedding?: { values?: number[] };
error?: { message?: string };
};
error?: { message?: string };
};
const GEMINI_BATCH_MAX_REQUESTS = 50000;
const debugEmbeddings = process.env.CLAWDBOT_DEBUG_MEMORY_EMBEDDINGS === "1";
const log = createSubsystemLogger("memory/embeddings");
const debugLog = (message: string, meta?: Record<string, unknown>) => {
if (!debugEmbeddings) return;
const suffix = meta ? ` ${JSON.stringify(meta)}` : "";
log.raw(`${message}${suffix}`);
};
function getGeminiBaseUrl(gemini: GeminiEmbeddingClient): string {
return gemini.baseUrl?.replace(/\/$/, "") ?? "";
}
function getGeminiHeaders(
gemini: GeminiEmbeddingClient,
params: { json: boolean },
): Record<string, string> {
const headers = gemini.headers ? { ...gemini.headers } : {};
if (params.json) {
if (!headers["Content-Type"] && !headers["content-type"]) {
headers["Content-Type"] = "application/json";
}
} else {
delete headers["Content-Type"];
delete headers["content-type"];
}
return headers;
}
function getGeminiUploadUrl(baseUrl: string): string {
if (baseUrl.includes("/v1beta")) {
return baseUrl.replace(/\/v1beta\/?$/, "/upload/v1beta");
}
return `${baseUrl.replace(/\/$/, "")}/upload`;
}
function splitGeminiBatchRequests(requests: GeminiBatchRequest[]): GeminiBatchRequest[][] {
if (requests.length <= GEMINI_BATCH_MAX_REQUESTS) return [requests];
const groups: GeminiBatchRequest[][] = [];
for (let i = 0; i < requests.length; i += GEMINI_BATCH_MAX_REQUESTS) {
groups.push(requests.slice(i, i + GEMINI_BATCH_MAX_REQUESTS));
}
return groups;
}
function buildGeminiUploadBody(params: { jsonl: string; displayName: string }): {
body: Blob;
contentType: string;
} {
const boundary = `clawdbot-${hashText(params.displayName)}`;
const jsonPart = JSON.stringify({
file: {
displayName: params.displayName,
mimeType: "application/jsonl",
},
});
const delimiter = `--${boundary}\r\n`;
const closeDelimiter = `--${boundary}--\r\n`;
const parts = [
`${delimiter}Content-Type: application/json; charset=UTF-8\r\n\r\n${jsonPart}\r\n`,
`${delimiter}Content-Type: application/jsonl; charset=UTF-8\r\n\r\n${params.jsonl}\r\n`,
closeDelimiter,
];
const body = new Blob([parts.join("")], { type: "multipart/related" });
return {
body,
contentType: `multipart/related; boundary=${boundary}`,
};
}
async function submitGeminiBatch(params: {
gemini: GeminiEmbeddingClient;
requests: GeminiBatchRequest[];
agentId: string;
}): Promise<GeminiBatchStatus> {
const baseUrl = getGeminiBaseUrl(params.gemini);
const jsonl = params.requests
.map((request) =>
JSON.stringify({
key: request.custom_id,
request: {
content: request.content,
task_type: request.taskType,
},
}),
)
.join("\n");
const displayName = `memory-embeddings-${hashText(String(Date.now()))}`;
const uploadPayload = buildGeminiUploadBody({ jsonl, displayName });
const uploadUrl = `${getGeminiUploadUrl(baseUrl)}/files?uploadType=multipart`;
debugLog("memory embeddings: gemini batch upload", {
uploadUrl,
baseUrl,
requests: params.requests.length,
});
const fileRes = await fetch(uploadUrl, {
method: "POST",
headers: {
...getGeminiHeaders(params.gemini, { json: false }),
"Content-Type": uploadPayload.contentType,
},
body: uploadPayload.body,
});
if (!fileRes.ok) {
const text = await fileRes.text();
throw new Error(`gemini batch file upload failed: ${fileRes.status} ${text}`);
}
const filePayload = (await fileRes.json()) as { name?: string; file?: { name?: string } };
const fileId = filePayload.name ?? filePayload.file?.name;
if (!fileId) {
throw new Error("gemini batch file upload failed: missing file id");
}
const batchBody = {
batch: {
displayName: `memory-embeddings-${params.agentId}`,
inputConfig: {
file_name: fileId,
},
},
};
const batchEndpoint = `${baseUrl}/${params.gemini.modelPath}:asyncBatchEmbedContent`;
debugLog("memory embeddings: gemini batch create", {
batchEndpoint,
fileId,
});
const batchRes = await fetch(batchEndpoint, {
method: "POST",
headers: getGeminiHeaders(params.gemini, { json: true }),
body: JSON.stringify(batchBody),
});
if (batchRes.ok) {
return (await batchRes.json()) as GeminiBatchStatus;
}
const text = await batchRes.text();
if (batchRes.status === 404) {
throw new Error(
"gemini batch create failed: 404 (asyncBatchEmbedContent not available for this model/baseUrl). Disable remote.batch.enabled or switch providers.",
);
}
throw new Error(`gemini batch create failed: ${batchRes.status} ${text}`);
}
async function fetchGeminiBatchStatus(params: {
gemini: GeminiEmbeddingClient;
batchName: string;
}): Promise<GeminiBatchStatus> {
const baseUrl = getGeminiBaseUrl(params.gemini);
const name = params.batchName.startsWith("batches/") ? params.batchName : `batches/${params.batchName}`;
const statusUrl = `${baseUrl}/${name}`;
debugLog("memory embeddings: gemini batch status", { statusUrl });
const res = await fetch(statusUrl, {
headers: getGeminiHeaders(params.gemini, { json: true }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`gemini batch status failed: ${res.status} ${text}`);
}
return (await res.json()) as GeminiBatchStatus;
}
async function fetchGeminiFileContent(params: {
gemini: GeminiEmbeddingClient;
fileId: string;
}): Promise<string> {
const baseUrl = getGeminiBaseUrl(params.gemini);
const file = params.fileId.startsWith("files/") ? params.fileId : `files/${params.fileId}`;
const downloadUrl = `${baseUrl}/${file}:download`;
debugLog("memory embeddings: gemini batch download", { downloadUrl });
const res = await fetch(downloadUrl, {
headers: getGeminiHeaders(params.gemini, { json: true }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`gemini batch file content failed: ${res.status} ${text}`);
}
return await res.text();
}
function parseGeminiBatchOutput(text: string): GeminiBatchOutputLine[] {
if (!text.trim()) return [];
return text
.split("\n")
.map((line) => line.trim())
.filter(Boolean)
.map((line) => JSON.parse(line) as GeminiBatchOutputLine);
}
async function waitForGeminiBatch(params: {
gemini: GeminiEmbeddingClient;
batchName: string;
wait: boolean;
pollIntervalMs: number;
timeoutMs: number;
debug?: (message: string, data?: Record<string, unknown>) => void;
initial?: GeminiBatchStatus;
}): Promise<{ outputFileId: string }> {
const start = Date.now();
let current: GeminiBatchStatus | undefined = params.initial;
while (true) {
const status =
current ??
(await fetchGeminiBatchStatus({
gemini: params.gemini,
batchName: params.batchName,
}));
const state = status.state ?? "UNKNOWN";
if (["SUCCEEDED", "COMPLETED", "DONE"].includes(state)) {
const outputFileId =
status.outputConfig?.file ??
status.outputConfig?.fileId ??
status.metadata?.output?.responsesFile;
if (!outputFileId) {
throw new Error(`gemini batch ${params.batchName} completed without output file`);
}
return { outputFileId };
}
if (["FAILED", "CANCELLED", "CANCELED", "EXPIRED"].includes(state)) {
const message = status.error?.message ?? "unknown error";
throw new Error(`gemini batch ${params.batchName} ${state}: ${message}`);
}
if (!params.wait) {
throw new Error(`gemini batch ${params.batchName} still ${state}; wait disabled`);
}
if (Date.now() - start > params.timeoutMs) {
throw new Error(`gemini batch ${params.batchName} timed out after ${params.timeoutMs}ms`);
}
params.debug?.(`gemini batch ${params.batchName} ${state}; waiting ${params.pollIntervalMs}ms`);
await new Promise((resolve) => setTimeout(resolve, params.pollIntervalMs));
current = undefined;
}
}
async function runWithConcurrency<T>(tasks: Array<() => Promise<T>>, limit: number): Promise<T[]> {
if (tasks.length === 0) return [];
const resolvedLimit = Math.max(1, Math.min(limit, tasks.length));
const results: T[] = Array.from({ length: tasks.length });
let next = 0;
let firstError: unknown = null;
const workers = Array.from({ length: resolvedLimit }, async () => {
while (true) {
if (firstError) return;
const index = next;
next += 1;
if (index >= tasks.length) return;
try {
results[index] = await tasks[index]();
} catch (err) {
firstError = err;
return;
}
}
});
await Promise.allSettled(workers);
if (firstError) throw firstError;
return results;
}
export async function runGeminiEmbeddingBatches(params: {
gemini: GeminiEmbeddingClient;
agentId: string;
requests: GeminiBatchRequest[];
wait: boolean;
pollIntervalMs: number;
timeoutMs: number;
concurrency: number;
debug?: (message: string, data?: Record<string, unknown>) => void;
}): Promise<Map<string, number[]>> {
if (params.requests.length === 0) return new Map();
const groups = splitGeminiBatchRequests(params.requests);
const byCustomId = new Map<string, number[]>();
const tasks = groups.map((group, groupIndex) => async () => {
const batchInfo = await submitGeminiBatch({
gemini: params.gemini,
requests: group,
agentId: params.agentId,
});
const batchName = batchInfo.name ?? "";
if (!batchName) {
throw new Error("gemini batch create failed: missing batch name");
}
params.debug?.("memory embeddings: gemini batch created", {
batchName,
state: batchInfo.state,
group: groupIndex + 1,
groups: groups.length,
requests: group.length,
});
if (!params.wait && batchInfo.state && !["SUCCEEDED", "COMPLETED", "DONE"].includes(batchInfo.state)) {
throw new Error(
`gemini batch ${batchName} submitted; enable remote.batch.wait to await completion`,
);
}
const completed =
batchInfo.state && ["SUCCEEDED", "COMPLETED", "DONE"].includes(batchInfo.state)
? {
outputFileId:
batchInfo.outputConfig?.file ??
batchInfo.outputConfig?.fileId ??
batchInfo.metadata?.output?.responsesFile ??
"",
}
: await waitForGeminiBatch({
gemini: params.gemini,
batchName,
wait: params.wait,
pollIntervalMs: params.pollIntervalMs,
timeoutMs: params.timeoutMs,
debug: params.debug,
initial: batchInfo,
});
if (!completed.outputFileId) {
throw new Error(`gemini batch ${batchName} completed without output file`);
}
const content = await fetchGeminiFileContent({
gemini: params.gemini,
fileId: completed.outputFileId,
});
const outputLines = parseGeminiBatchOutput(content);
const errors: string[] = [];
const remaining = new Set(group.map((request) => request.custom_id));
for (const line of outputLines) {
const customId = line.key ?? line.custom_id ?? line.request_id;
if (!customId) continue;
remaining.delete(customId);
if (line.error?.message) {
errors.push(`${customId}: ${line.error.message}`);
continue;
}
if (line.response?.error?.message) {
errors.push(`${customId}: ${line.response.error.message}`);
continue;
}
const embedding =
line.embedding?.values ?? line.response?.embedding?.values ?? [];
if (embedding.length === 0) {
errors.push(`${customId}: empty embedding`);
continue;
}
byCustomId.set(customId, embedding);
}
if (errors.length > 0) {
throw new Error(`gemini batch ${batchName} failed: ${errors.join("; ")}`);
}
if (remaining.size > 0) {
throw new Error(`gemini batch ${batchName} missing ${remaining.size} embedding responses`);
}
});
params.debug?.("memory embeddings: gemini batch submit", {
requests: params.requests.length,
groups: groups.length,
wait: params.wait,
concurrency: params.concurrency,
pollIntervalMs: params.pollIntervalMs,
timeoutMs: params.timeoutMs,
});
await runWithConcurrency(tasks, params.concurrency);
return byCustomId;
}

362
src/memory/batch-openai.ts Normal file
View File

@@ -0,0 +1,362 @@
import type { OpenAiEmbeddingClient } from "./embeddings-openai.js";
import { hashText } from "./internal.js";
export type OpenAiBatchRequest = {
custom_id: string;
method: "POST";
url: "/v1/embeddings";
body: {
model: string;
input: string;
};
};
export type OpenAiBatchStatus = {
id?: string;
status?: string;
output_file_id?: string | null;
error_file_id?: string | null;
};
export type OpenAiBatchOutputLine = {
custom_id?: string;
response?: {
status_code?: number;
body?: {
data?: Array<{ embedding?: number[]; index?: number }>;
error?: { message?: string };
};
};
error?: { message?: string };
};
export const OPENAI_BATCH_ENDPOINT = "/v1/embeddings";
const OPENAI_BATCH_COMPLETION_WINDOW = "24h";
const OPENAI_BATCH_MAX_REQUESTS = 50000;
function getOpenAiBaseUrl(openAi: OpenAiEmbeddingClient): string {
return openAi.baseUrl?.replace(/\/$/, "") ?? "";
}
function getOpenAiHeaders(
openAi: OpenAiEmbeddingClient,
params: { json: boolean },
): Record<string, string> {
const headers = openAi.headers ? { ...openAi.headers } : {};
if (params.json) {
if (!headers["Content-Type"] && !headers["content-type"]) {
headers["Content-Type"] = "application/json";
}
} else {
delete headers["Content-Type"];
delete headers["content-type"];
}
return headers;
}
function splitOpenAiBatchRequests(requests: OpenAiBatchRequest[]): OpenAiBatchRequest[][] {
if (requests.length <= OPENAI_BATCH_MAX_REQUESTS) return [requests];
const groups: OpenAiBatchRequest[][] = [];
for (let i = 0; i < requests.length; i += OPENAI_BATCH_MAX_REQUESTS) {
groups.push(requests.slice(i, i + OPENAI_BATCH_MAX_REQUESTS));
}
return groups;
}
async function submitOpenAiBatch(params: {
openAi: OpenAiEmbeddingClient;
requests: OpenAiBatchRequest[];
agentId: string;
}): Promise<OpenAiBatchStatus> {
const baseUrl = getOpenAiBaseUrl(params.openAi);
const jsonl = params.requests.map((request) => JSON.stringify(request)).join("\n");
const form = new FormData();
form.append("purpose", "batch");
form.append(
"file",
new Blob([jsonl], { type: "application/jsonl" }),
`memory-embeddings.${hashText(String(Date.now()))}.jsonl`,
);
const fileRes = await fetch(`${baseUrl}/files`, {
method: "POST",
headers: getOpenAiHeaders(params.openAi, { json: false }),
body: form,
});
if (!fileRes.ok) {
const text = await fileRes.text();
throw new Error(`openai batch file upload failed: ${fileRes.status} ${text}`);
}
const filePayload = (await fileRes.json()) as { id?: string };
if (!filePayload.id) {
throw new Error("openai batch file upload failed: missing file id");
}
const batchRes = await fetch(`${baseUrl}/batches`, {
method: "POST",
headers: getOpenAiHeaders(params.openAi, { json: true }),
body: JSON.stringify({
input_file_id: filePayload.id,
endpoint: OPENAI_BATCH_ENDPOINT,
completion_window: OPENAI_BATCH_COMPLETION_WINDOW,
metadata: {
source: "clawdbot-memory",
agent: params.agentId,
},
}),
});
if (!batchRes.ok) {
const text = await batchRes.text();
throw new Error(`openai batch create failed: ${batchRes.status} ${text}`);
}
return (await batchRes.json()) as OpenAiBatchStatus;
}
async function fetchOpenAiBatchStatus(params: {
openAi: OpenAiEmbeddingClient;
batchId: string;
}): Promise<OpenAiBatchStatus> {
const baseUrl = getOpenAiBaseUrl(params.openAi);
const res = await fetch(`${baseUrl}/batches/${params.batchId}`, {
headers: getOpenAiHeaders(params.openAi, { json: true }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`openai batch status failed: ${res.status} ${text}`);
}
return (await res.json()) as OpenAiBatchStatus;
}
async function fetchOpenAiFileContent(params: {
openAi: OpenAiEmbeddingClient;
fileId: string;
}): Promise<string> {
const baseUrl = getOpenAiBaseUrl(params.openAi);
const res = await fetch(`${baseUrl}/files/${params.fileId}/content`, {
headers: getOpenAiHeaders(params.openAi, { json: true }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`openai batch file content failed: ${res.status} ${text}`);
}
return await res.text();
}
function parseOpenAiBatchOutput(text: string): OpenAiBatchOutputLine[] {
if (!text.trim()) return [];
return text
.split("\n")
.map((line) => line.trim())
.filter(Boolean)
.map((line) => JSON.parse(line) as OpenAiBatchOutputLine);
}
async function readOpenAiBatchError(params: {
openAi: OpenAiEmbeddingClient;
errorFileId: string;
}): Promise<string | undefined> {
try {
const content = await fetchOpenAiFileContent({
openAi: params.openAi,
fileId: params.errorFileId,
});
const lines = parseOpenAiBatchOutput(content);
const first = lines.find((line) => line.error?.message || line.response?.body?.error);
const message =
first?.error?.message ??
(typeof first?.response?.body?.error?.message === "string"
? first?.response?.body?.error?.message
: undefined);
return message;
} catch (err) {
const message = err instanceof Error ? err.message : String(err);
return message ? `error file unavailable: ${message}` : undefined;
}
}
async function waitForOpenAiBatch(params: {
openAi: OpenAiEmbeddingClient;
batchId: string;
wait: boolean;
pollIntervalMs: number;
timeoutMs: number;
debug?: (message: string, data?: Record<string, unknown>) => void;
initial?: OpenAiBatchStatus;
}): Promise<{ outputFileId: string; errorFileId?: string }> {
const start = Date.now();
let current: OpenAiBatchStatus | undefined = params.initial;
while (true) {
const status =
current ??
(await fetchOpenAiBatchStatus({
openAi: params.openAi,
batchId: params.batchId,
}));
const state = status.status ?? "unknown";
if (state === "completed") {
if (!status.output_file_id) {
throw new Error(`openai batch ${params.batchId} completed without output file`);
}
return {
outputFileId: status.output_file_id,
errorFileId: status.error_file_id ?? undefined,
};
}
if (["failed", "expired", "cancelled", "canceled"].includes(state)) {
const detail = status.error_file_id
? await readOpenAiBatchError({ openAi: params.openAi, errorFileId: status.error_file_id })
: undefined;
const suffix = detail ? `: ${detail}` : "";
throw new Error(`openai batch ${params.batchId} ${state}${suffix}`);
}
if (!params.wait) {
throw new Error(`openai batch ${params.batchId} still ${state}; wait disabled`);
}
if (Date.now() - start > params.timeoutMs) {
throw new Error(`openai batch ${params.batchId} timed out after ${params.timeoutMs}ms`);
}
params.debug?.(`openai batch ${params.batchId} ${state}; waiting ${params.pollIntervalMs}ms`);
await new Promise((resolve) => setTimeout(resolve, params.pollIntervalMs));
current = undefined;
}
}
async function runWithConcurrency<T>(tasks: Array<() => Promise<T>>, limit: number): Promise<T[]> {
if (tasks.length === 0) return [];
const resolvedLimit = Math.max(1, Math.min(limit, tasks.length));
const results: T[] = Array.from({ length: tasks.length });
let next = 0;
let firstError: unknown = null;
const workers = Array.from({ length: resolvedLimit }, async () => {
while (true) {
if (firstError) return;
const index = next;
next += 1;
if (index >= tasks.length) return;
try {
results[index] = await tasks[index]();
} catch (err) {
firstError = err;
return;
}
}
});
await Promise.allSettled(workers);
if (firstError) throw firstError;
return results;
}
export async function runOpenAiEmbeddingBatches(params: {
openAi: OpenAiEmbeddingClient;
agentId: string;
requests: OpenAiBatchRequest[];
wait: boolean;
pollIntervalMs: number;
timeoutMs: number;
concurrency: number;
debug?: (message: string, data?: Record<string, unknown>) => void;
}): Promise<Map<string, number[]>> {
if (params.requests.length === 0) return new Map();
const groups = splitOpenAiBatchRequests(params.requests);
const byCustomId = new Map<string, number[]>();
const tasks = groups.map((group, groupIndex) => async () => {
const batchInfo = await submitOpenAiBatch({
openAi: params.openAi,
requests: group,
agentId: params.agentId,
});
if (!batchInfo.id) {
throw new Error("openai batch create failed: missing batch id");
}
params.debug?.("memory embeddings: openai batch created", {
batchId: batchInfo.id,
status: batchInfo.status,
group: groupIndex + 1,
groups: groups.length,
requests: group.length,
});
if (!params.wait && batchInfo.status !== "completed") {
throw new Error(
`openai batch ${batchInfo.id} submitted; enable remote.batch.wait to await completion`,
);
}
const completed =
batchInfo.status === "completed"
? {
outputFileId: batchInfo.output_file_id ?? "",
errorFileId: batchInfo.error_file_id ?? undefined,
}
: await waitForOpenAiBatch({
openAi: params.openAi,
batchId: batchInfo.id,
wait: params.wait,
pollIntervalMs: params.pollIntervalMs,
timeoutMs: params.timeoutMs,
debug: params.debug,
initial: batchInfo,
});
if (!completed.outputFileId) {
throw new Error(`openai batch ${batchInfo.id} completed without output file`);
}
const content = await fetchOpenAiFileContent({
openAi: params.openAi,
fileId: completed.outputFileId,
});
const outputLines = parseOpenAiBatchOutput(content);
const errors: string[] = [];
const remaining = new Set(group.map((request) => request.custom_id));
for (const line of outputLines) {
const customId = line.custom_id;
if (!customId) continue;
remaining.delete(customId);
if (line.error?.message) {
errors.push(`${customId}: ${line.error.message}`);
continue;
}
const response = line.response;
const statusCode = response?.status_code ?? 0;
if (statusCode >= 400) {
const message =
response?.body?.error?.message ??
(typeof response?.body === "string" ? response.body : undefined) ??
"unknown error";
errors.push(`${customId}: ${message}`);
continue;
}
const data = response?.body?.data ?? [];
const embedding = data[0]?.embedding ?? [];
if (embedding.length === 0) {
errors.push(`${customId}: empty embedding`);
continue;
}
byCustomId.set(customId, embedding);
}
if (errors.length > 0) {
throw new Error(`openai batch ${batchInfo.id} failed: ${errors.join("; ")}`);
}
if (remaining.size > 0) {
throw new Error(`openai batch ${batchInfo.id} missing ${remaining.size} embedding responses`);
}
});
params.debug?.("memory embeddings: openai batch submit", {
requests: params.requests.length,
groups: groups.length,
wait: params.wait,
concurrency: params.concurrency,
pollIntervalMs: params.pollIntervalMs,
timeoutMs: params.timeoutMs,
});
await runWithConcurrency(tasks, params.concurrency);
return byCustomId;
}

View File

@@ -7,6 +7,7 @@ import { afterEach, beforeEach, describe, expect, it, vi } from "vitest";
import { getMemorySearchManager, type MemoryIndexManager } from "./index.js";
let embedBatchCalls = 0;
let failEmbeddings = false;
vi.mock("./embeddings.js", () => {
const embedText = (text: string) => {
@@ -24,6 +25,9 @@ vi.mock("./embeddings.js", () => {
embedQuery: async (text: string) => embedText(text),
embedBatch: async (texts: string[]) => {
embedBatchCalls += 1;
if (failEmbeddings) {
throw new Error("mock embeddings failed");
}
return texts.map(embedText);
},
},
@@ -38,6 +42,7 @@ describe("memory index", () => {
beforeEach(async () => {
embedBatchCalls = 0;
failEmbeddings = false;
workspaceDir = await fs.mkdtemp(path.join(os.tmpdir(), "clawdbot-mem-"));
indexPath = path.join(workspaceDir, "index.sqlite");
await fs.mkdir(path.join(workspaceDir, "memory"));
@@ -181,6 +186,43 @@ describe("memory index", () => {
expect(embedBatchCalls).toBe(afterFirst);
});
it("preserves existing index when forced reindex fails", async () => {
const cfg = {
agents: {
defaults: {
workspace: workspaceDir,
memorySearch: {
provider: "openai",
model: "mock-embed",
store: { path: indexPath, vector: { enabled: false } },
sync: { watch: false, onSessionStart: false, onSearch: false },
query: { minScore: 0 },
cache: { enabled: false },
},
},
list: [{ id: "main", default: true }],
},
};
const result = await getMemorySearchManager({ cfg, agentId: "main" });
expect(result.manager).not.toBeNull();
if (!result.manager) throw new Error("manager missing");
manager = result.manager;
await manager.sync({ force: true });
const before = manager.status();
expect(before.files).toBeGreaterThan(0);
failEmbeddings = true;
await expect(manager.sync({ force: true })).rejects.toThrow(/mock embeddings failed/i);
const after = manager.status();
expect(after.files).toBe(before.files);
expect(after.chunks).toBe(before.chunks);
const files = await fs.readdir(workspaceDir);
expect(files.some((name) => name.includes(".tmp-"))).toBe(false);
});
it("finds keyword matches via hybrid search when query embedding is zero", async () => {
const cfg = {
agents: {

File diff suppressed because it is too large Load Diff

View File

@@ -1,435 +1,2 @@
import { retryAsync } from "../infra/retry.js";
import type { OpenAiEmbeddingClient } from "./embeddings.js";
import { hashText } from "./internal.js";
export type OpenAiBatchRequest = {
custom_id: string;
method: "POST";
url: "/v1/embeddings";
body: {
model: string;
input: string;
};
};
export type OpenAiBatchStatus = {
id?: string;
status?: string;
output_file_id?: string | null;
error_file_id?: string | null;
};
export type OpenAiBatchOutputLine = {
custom_id?: string;
response?: {
status_code?: number;
body?: {
data?: Array<{ embedding?: number[]; index?: number }>;
error?: { message?: string };
};
};
error?: { message?: string };
};
export const OPENAI_BATCH_ENDPOINT = "/v1/embeddings";
const OPENAI_BATCH_COMPLETION_WINDOW = "24h";
const OPENAI_BATCH_MAX_REQUESTS = 50000;
const OPENAI_BATCH_RETRY = {
attempts: 3,
minDelayMs: 500,
maxDelayMs: 5000,
jitter: 0.1,
};
type RetryableError = Error & { status?: number };
function isRetryableBatchError(err: unknown): boolean {
const status =
typeof (err as RetryableError)?.status === "number" ? (err as RetryableError).status : undefined;
if (typeof status === "number") {
return status === 429 || status >= 500;
}
const message = err instanceof Error ? err.message : String(err);
return /timeout|timed out|ECONNRESET|ECONNREFUSED|EHOSTUNREACH|ENOTFOUND|EAI_AGAIN|network|fetch failed|upstream connect/i.test(
message,
);
}
function formatRetryError(err: unknown): string {
return err instanceof Error ? err.message : String(err);
}
function getOpenAiBaseUrl(openAi: OpenAiEmbeddingClient): string {
return openAi.baseUrl?.replace(/\/$/, "") ?? "";
}
function getOpenAiHeaders(
openAi: OpenAiEmbeddingClient,
params: { json: boolean },
): Record<string, string> {
const headers = openAi.headers ? { ...openAi.headers } : {};
if (params.json) {
if (!headers["Content-Type"] && !headers["content-type"]) {
headers["Content-Type"] = "application/json";
}
} else {
delete headers["Content-Type"];
delete headers["content-type"];
}
return headers;
}
function splitOpenAiBatchRequests(requests: OpenAiBatchRequest[]): OpenAiBatchRequest[][] {
if (requests.length <= OPENAI_BATCH_MAX_REQUESTS) return [requests];
const groups: OpenAiBatchRequest[][] = [];
for (let i = 0; i < requests.length; i += OPENAI_BATCH_MAX_REQUESTS) {
groups.push(requests.slice(i, i + OPENAI_BATCH_MAX_REQUESTS));
}
return groups;
}
async function fetchOpenAiWithRetry(params: {
openAi: OpenAiEmbeddingClient;
url: string;
init?: RequestInit;
label: string;
debug?: (message: string, data?: Record<string, unknown>) => void;
}): Promise<Response> {
return await retryAsync(
async () => {
const res = await fetch(params.url, params.init);
if (!res.ok) {
const text = await res.text();
const err = new Error(`openai batch ${params.label} failed: ${res.status} ${text}`);
(err as RetryableError).status = res.status;
throw err;
}
return res;
},
{
...OPENAI_BATCH_RETRY,
label: params.label,
shouldRetry: isRetryableBatchError,
onRetry: (info) => {
params.debug?.(
`openai batch ${params.label} retry ${info.attempt}/${info.maxAttempts} in ${info.delayMs}ms`,
{ error: formatRetryError(info.err) },
);
},
},
);
}
async function submitOpenAiBatch(params: {
openAi: OpenAiEmbeddingClient;
requests: OpenAiBatchRequest[];
agentId: string;
debug?: (message: string, data?: Record<string, unknown>) => void;
}): Promise<OpenAiBatchStatus> {
const baseUrl = getOpenAiBaseUrl(params.openAi);
const jsonl = params.requests.map((request) => JSON.stringify(request)).join("\n");
const form = new FormData();
form.append("purpose", "batch");
form.append(
"file",
new Blob([jsonl], { type: "application/jsonl" }),
`memory-embeddings.${hashText(String(Date.now()))}.jsonl`,
);
const fileRes = await fetchOpenAiWithRetry({
openAi: params.openAi,
url: `${baseUrl}/files`,
init: {
method: "POST",
headers: getOpenAiHeaders(params.openAi, { json: false }),
body: form,
},
label: "file upload",
debug: params.debug,
});
const filePayload = (await fileRes.json()) as { id?: string };
if (!filePayload.id) {
throw new Error("openai batch file upload failed: missing file id");
}
const batchRes = await fetchOpenAiWithRetry({
openAi: params.openAi,
url: `${baseUrl}/batches`,
init: {
method: "POST",
headers: getOpenAiHeaders(params.openAi, { json: true }),
body: JSON.stringify({
input_file_id: filePayload.id,
endpoint: OPENAI_BATCH_ENDPOINT,
completion_window: OPENAI_BATCH_COMPLETION_WINDOW,
metadata: {
source: "clawdbot-memory",
agent: params.agentId,
},
}),
},
label: "create",
debug: params.debug,
});
return (await batchRes.json()) as OpenAiBatchStatus;
}
async function fetchOpenAiBatchStatus(params: {
openAi: OpenAiEmbeddingClient;
batchId: string;
debug?: (message: string, data?: Record<string, unknown>) => void;
}): Promise<OpenAiBatchStatus> {
const baseUrl = getOpenAiBaseUrl(params.openAi);
const res = await fetchOpenAiWithRetry({
openAi: params.openAi,
url: `${baseUrl}/batches/${params.batchId}`,
init: { headers: getOpenAiHeaders(params.openAi, { json: true }) },
label: "status",
debug: params.debug,
});
return (await res.json()) as OpenAiBatchStatus;
}
async function fetchOpenAiFileContent(params: {
openAi: OpenAiEmbeddingClient;
fileId: string;
debug?: (message: string, data?: Record<string, unknown>) => void;
}): Promise<string> {
const baseUrl = getOpenAiBaseUrl(params.openAi);
const res = await fetchOpenAiWithRetry({
openAi: params.openAi,
url: `${baseUrl}/files/${params.fileId}/content`,
init: { headers: getOpenAiHeaders(params.openAi, { json: true }) },
label: "file content",
debug: params.debug,
});
return await res.text();
}
function parseOpenAiBatchOutput(text: string): OpenAiBatchOutputLine[] {
if (!text.trim()) return [];
return text
.split("\n")
.map((line) => line.trim())
.filter(Boolean)
.map((line) => JSON.parse(line) as OpenAiBatchOutputLine);
}
async function readOpenAiBatchError(params: {
openAi: OpenAiEmbeddingClient;
errorFileId: string;
debug?: (message: string, data?: Record<string, unknown>) => void;
}): Promise<string | undefined> {
try {
const content = await fetchOpenAiFileContent({
openAi: params.openAi,
fileId: params.errorFileId,
debug: params.debug,
});
const lines = parseOpenAiBatchOutput(content);
const first = lines.find((line) => line.error?.message || line.response?.body?.error);
const message =
first?.error?.message ??
(typeof first?.response?.body?.error?.message === "string"
? first?.response?.body?.error?.message
: undefined);
return message;
} catch (err) {
const message = err instanceof Error ? err.message : String(err);
return message ? `error file unavailable: ${message}` : undefined;
}
}
async function waitForOpenAiBatch(params: {
openAi: OpenAiEmbeddingClient;
batchId: string;
wait: boolean;
pollIntervalMs: number;
timeoutMs: number;
debug?: (message: string, data?: Record<string, unknown>) => void;
initial?: OpenAiBatchStatus;
}): Promise<{ outputFileId: string; errorFileId?: string }> {
const start = Date.now();
let current: OpenAiBatchStatus | undefined = params.initial;
while (true) {
const status =
current ??
(await fetchOpenAiBatchStatus({
openAi: params.openAi,
batchId: params.batchId,
debug: params.debug,
}));
const state = status.status ?? "unknown";
if (state === "completed") {
if (!status.output_file_id) {
throw new Error(`openai batch ${params.batchId} completed without output file`);
}
return {
outputFileId: status.output_file_id,
errorFileId: status.error_file_id ?? undefined,
};
}
if (["failed", "expired", "cancelled", "canceled"].includes(state)) {
const detail = status.error_file_id
? await readOpenAiBatchError({
openAi: params.openAi,
errorFileId: status.error_file_id,
debug: params.debug,
})
: undefined;
const suffix = detail ? `: ${detail}` : "";
throw new Error(`openai batch ${params.batchId} ${state}${suffix}`);
}
if (!params.wait) {
throw new Error(`openai batch ${params.batchId} still ${state}; wait disabled`);
}
if (Date.now() - start > params.timeoutMs) {
throw new Error(`openai batch ${params.batchId} timed out after ${params.timeoutMs}ms`);
}
params.debug?.(`openai batch ${params.batchId} ${state}; waiting ${params.pollIntervalMs}ms`);
await new Promise((resolve) => setTimeout(resolve, params.pollIntervalMs));
current = undefined;
}
}
async function runWithConcurrency<T>(tasks: Array<() => Promise<T>>, limit: number): Promise<T[]> {
if (tasks.length === 0) return [];
const resolvedLimit = Math.max(1, Math.min(limit, tasks.length));
const results: T[] = Array.from({ length: tasks.length });
let next = 0;
let firstError: unknown = null;
const workers = Array.from({ length: resolvedLimit }, async () => {
while (true) {
if (firstError) return;
const index = next;
next += 1;
if (index >= tasks.length) return;
try {
results[index] = await tasks[index]();
} catch (err) {
firstError = err;
return;
}
}
});
await Promise.allSettled(workers);
if (firstError) throw firstError;
return results;
}
export async function runOpenAiEmbeddingBatches(params: {
openAi: OpenAiEmbeddingClient;
agentId: string;
requests: OpenAiBatchRequest[];
wait: boolean;
pollIntervalMs: number;
timeoutMs: number;
concurrency: number;
debug?: (message: string, data?: Record<string, unknown>) => void;
}): Promise<Map<string, number[]>> {
if (params.requests.length === 0) return new Map();
const groups = splitOpenAiBatchRequests(params.requests);
const byCustomId = new Map<string, number[]>();
const tasks = groups.map((group, groupIndex) => async () => {
const batchInfo = await submitOpenAiBatch({
openAi: params.openAi,
requests: group,
agentId: params.agentId,
debug: params.debug,
});
if (!batchInfo.id) {
throw new Error("openai batch create failed: missing batch id");
}
params.debug?.("memory embeddings: openai batch created", {
batchId: batchInfo.id,
status: batchInfo.status,
group: groupIndex + 1,
groups: groups.length,
requests: group.length,
});
if (!params.wait && batchInfo.status !== "completed") {
throw new Error(
`openai batch ${batchInfo.id} submitted; enable remote.batch.wait to await completion`,
);
}
const completed =
batchInfo.status === "completed"
? {
outputFileId: batchInfo.output_file_id ?? "",
errorFileId: batchInfo.error_file_id ?? undefined,
}
: await waitForOpenAiBatch({
openAi: params.openAi,
batchId: batchInfo.id,
wait: params.wait,
pollIntervalMs: params.pollIntervalMs,
timeoutMs: params.timeoutMs,
debug: params.debug,
initial: batchInfo,
});
if (!completed.outputFileId) {
throw new Error(`openai batch ${batchInfo.id} completed without output file`);
}
const content = await fetchOpenAiFileContent({
openAi: params.openAi,
fileId: completed.outputFileId,
debug: params.debug,
});
const outputLines = parseOpenAiBatchOutput(content);
const errors: string[] = [];
const remaining = new Set(group.map((request) => request.custom_id));
for (const line of outputLines) {
const customId = line.custom_id;
if (!customId) continue;
remaining.delete(customId);
if (line.error?.message) {
errors.push(`${customId}: ${line.error.message}`);
continue;
}
const response = line.response;
const statusCode = response?.status_code ?? 0;
if (statusCode >= 400) {
const message =
response?.body?.error?.message ??
(typeof response?.body === "string" ? response.body : undefined) ??
"unknown error";
errors.push(`${customId}: ${message}`);
continue;
}
const data = response?.body?.data ?? [];
const embedding = data[0]?.embedding ?? [];
if (embedding.length === 0) {
errors.push(`${customId}: empty embedding`);
continue;
}
byCustomId.set(customId, embedding);
}
if (errors.length > 0) {
throw new Error(`openai batch ${batchInfo.id} failed: ${errors.join("; ")}`);
}
if (remaining.size > 0) {
throw new Error(`openai batch ${batchInfo.id} missing ${remaining.size} embedding responses`);
}
});
params.debug?.("memory embeddings: openai batch submit", {
requests: params.requests.length,
groups: groups.length,
wait: params.wait,
concurrency: params.concurrency,
pollIntervalMs: params.pollIntervalMs,
timeoutMs: params.timeoutMs,
});
await runWithConcurrency(tasks, params.concurrency);
return byCustomId;
}
// Deprecated: use ./batch-openai.js
export * from "./batch-openai.js";