feat: add OpenAI batch memory indexing

This commit is contained in:
Peter Steinberger
2026-01-17 22:31:12 +00:00
parent acc3eb11d0
commit a31a79396b
11 changed files with 587 additions and 38 deletions

View File

@@ -2,6 +2,11 @@
Docs: https://docs.clawd.bot
## 2026.1.17-3
### Changes
- Memory: add OpenAI Batch API indexing for embeddings when configured.
## 2026.1.17-2
### Changes

View File

@@ -108,6 +108,11 @@ agents: {
If you don't want to set an API key, use `memorySearch.provider = "local"` or set
`memorySearch.fallback = "none"`.
Batch indexing (OpenAI only):
- Set `agents.defaults.memorySearch.remote.batch.enabled = true` to submit embeddings via the OpenAI Batch API.
- Default behavior waits for batch completion; tune `remote.batch.wait`, `remote.batch.pollIntervalMs`, and `remote.batch.timeoutMinutes` if needed.
- Batch mode currently applies only when `memorySearch.provider = "openai"` and uses your OpenAI API key.
Config example:
```json5
@@ -117,6 +122,9 @@ agents: {
provider: "openai",
model: "text-embedding-3-small",
fallback: "openai",
remote: {
batch: { enabled: true }
},
sync: { watch: true }
}
}

View File

@@ -97,6 +97,12 @@ describe("memory search config", () => {
baseUrl: "https://agent.example/v1",
apiKey: "default-key",
headers: { "X-Default": "on" },
batch: {
enabled: false,
wait: true,
pollIntervalMs: 5000,
timeoutMinutes: 60,
},
});
});

View File

@@ -14,6 +14,12 @@ export type ResolvedMemorySearchConfig = {
baseUrl?: string;
apiKey?: string;
headers?: Record<string, string>;
batch?: {
enabled: boolean;
wait: boolean;
pollIntervalMs: number;
timeoutMinutes: number;
};
};
experimental: {
sessionMemory: boolean;
@@ -89,11 +95,24 @@ function mergeConfig(
overrides?.experimental?.sessionMemory ?? defaults?.experimental?.sessionMemory ?? false;
const provider = overrides?.provider ?? defaults?.provider ?? "openai";
const hasRemote = Boolean(defaults?.remote || overrides?.remote);
const batch = {
enabled: overrides?.remote?.batch?.enabled ?? defaults?.remote?.batch?.enabled ?? false,
wait: overrides?.remote?.batch?.wait ?? defaults?.remote?.batch?.wait ?? true,
pollIntervalMs:
overrides?.remote?.batch?.pollIntervalMs ??
defaults?.remote?.batch?.pollIntervalMs ??
5000,
timeoutMinutes:
overrides?.remote?.batch?.timeoutMinutes ??
defaults?.remote?.batch?.timeoutMinutes ??
60,
};
const remote = hasRemote
? {
baseUrl: overrides?.remote?.baseUrl ?? defaults?.remote?.baseUrl,
apiKey: overrides?.remote?.apiKey ?? defaults?.remote?.apiKey,
headers: overrides?.remote?.headers ?? defaults?.remote?.headers,
batch,
}
: undefined;
const fallback = overrides?.fallback ?? defaults?.fallback ?? "openai";

View File

@@ -366,6 +366,14 @@ const FIELD_HELP: Record<string, string> = {
"agents.defaults.memorySearch.remote.apiKey": "Custom API key for the remote embedding provider.",
"agents.defaults.memorySearch.remote.headers":
"Extra headers for remote embeddings (merged; remote overrides OpenAI headers).",
"agents.defaults.memorySearch.remote.batch.enabled":
"Enable OpenAI Batch API for memory embeddings (default: false).",
"agents.defaults.memorySearch.remote.batch.wait":
"Wait for OpenAI batch completion when indexing (default: true).",
"agents.defaults.memorySearch.remote.batch.pollIntervalMs":
"Polling interval in ms for OpenAI batch status (default: 5000).",
"agents.defaults.memorySearch.remote.batch.timeoutMinutes":
"Timeout in minutes for OpenAI batch indexing (default: 60).",
"agents.defaults.memorySearch.local.modelPath":
"Local GGUF model path or hf: URI (node-llama-cpp).",
"agents.defaults.memorySearch.fallback":

View File

@@ -158,6 +158,16 @@ export type MemorySearchConfig = {
baseUrl?: string;
apiKey?: string;
headers?: Record<string, string>;
batch?: {
/** Enable OpenAI Batch API for embedding indexing (default: false). */
enabled?: boolean;
/** Wait for batch completion (default: true). */
wait?: boolean;
/** Poll interval in ms (default: 5000). */
pollIntervalMs?: number;
/** Timeout in minutes (default: 60). */
timeoutMinutes?: number;
};
};
/** Fallback behavior when local embeddings fail. */
fallback?: "openai" | "none";

View File

@@ -206,6 +206,14 @@ export const MemorySearchSchema = z
baseUrl: z.string().optional(),
apiKey: z.string().optional(),
headers: z.record(z.string(), z.string()).optional(),
batch: z
.object({
enabled: z.boolean().optional(),
wait: z.boolean().optional(),
pollIntervalMs: z.number().int().nonnegative().optional(),
timeoutMinutes: z.number().int().positive().optional(),
})
.optional(),
})
.optional(),
fallback: z.union([z.literal("openai"), z.literal("none")]).optional(),

View File

@@ -15,6 +15,13 @@ export type EmbeddingProviderResult = {
requestedProvider: "openai" | "local";
fallbackFrom?: "local";
fallbackReason?: string;
openAi?: OpenAiEmbeddingClient;
};
export type OpenAiEmbeddingClient = {
baseUrl: string;
headers: Record<string, string>;
model: string;
};
export type EmbeddingProviderOptions = {
@@ -46,7 +53,45 @@ function normalizeOpenAiModel(model: string): string {
async function createOpenAiEmbeddingProvider(
options: EmbeddingProviderOptions,
): Promise<EmbeddingProvider> {
): Promise<{ provider: EmbeddingProvider; client: OpenAiEmbeddingClient }> {
const client = await resolveOpenAiEmbeddingClient(options);
const url = `${client.baseUrl.replace(/\/$/, "")}/embeddings`;
const embed = async (input: string[]): Promise<number[][]> => {
if (input.length === 0) return [];
const res = await fetch(url, {
method: "POST",
headers: client.headers,
body: JSON.stringify({ model: client.model, input }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`openai embeddings failed: ${res.status} ${text}`);
}
const payload = (await res.json()) as {
data?: Array<{ embedding?: number[] }>;
};
const data = payload.data ?? [];
return data.map((entry) => entry.embedding ?? []);
};
return {
provider: {
id: "openai",
model: client.model,
embedQuery: async (text) => {
const [vec] = await embed([text]);
return vec ?? [];
},
embedBatch: embed,
},
client,
};
}
async function resolveOpenAiEmbeddingClient(
options: EmbeddingProviderOptions,
): Promise<OpenAiEmbeddingClient> {
const remote = options.remote;
const remoteApiKey = remote?.apiKey?.trim();
const remoteBaseUrl = remote?.baseUrl?.trim();
@@ -61,7 +106,6 @@ async function createOpenAiEmbeddingProvider(
const providerConfig = options.config.models?.providers?.openai;
const baseUrl = remoteBaseUrl || providerConfig?.baseUrl?.trim() || DEFAULT_OPENAI_BASE_URL;
const url = `${baseUrl.replace(/\/$/, "")}/embeddings`;
const headerOverrides = Object.assign({}, providerConfig?.headers, remote?.headers);
const headers: Record<string, string> = {
"Content-Type": "application/json",
@@ -69,34 +113,7 @@ async function createOpenAiEmbeddingProvider(
...headerOverrides,
};
const model = normalizeOpenAiModel(options.model);
const embed = async (input: string[]): Promise<number[][]> => {
if (input.length === 0) return [];
const res = await fetch(url, {
method: "POST",
headers,
body: JSON.stringify({ model, input }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`openai embeddings failed: ${res.status} ${text}`);
}
const payload = (await res.json()) as {
data?: Array<{ embedding?: number[] }>;
};
const data = payload.data ?? [];
return data.map((entry) => entry.embedding ?? []);
};
return {
id: "openai",
model,
embedQuery: async (text) => {
const [vec] = await embed([text]);
return vec ?? [];
},
embedBatch: embed,
};
return { baseUrl, headers, model };
}
async function createLocalEmbeddingProvider(
@@ -159,12 +176,13 @@ export async function createEmbeddingProvider(
const reason = formatLocalSetupError(err);
if (options.fallback === "openai") {
try {
const provider = await createOpenAiEmbeddingProvider(options);
const { provider, client } = await createOpenAiEmbeddingProvider(options);
return {
provider,
requestedProvider,
fallbackFrom: "local",
fallbackReason: reason,
openAi: client,
};
} catch (fallbackErr) {
throw new Error(`${reason}\n\nFallback to OpenAI failed: ${formatError(fallbackErr)}`);
@@ -173,8 +191,8 @@ export async function createEmbeddingProvider(
throw new Error(reason);
}
}
const provider = await createOpenAiEmbeddingProvider(options);
return { provider, requestedProvider };
const { provider, client } = await createOpenAiEmbeddingProvider(options);
return { provider, requestedProvider, openAi: client };
}
function formatError(err: unknown): string {

View File

@@ -0,0 +1,148 @@
import fs from "node:fs/promises";
import os from "node:os";
import path from "node:path";
import { afterEach, beforeEach, describe, expect, it, vi } from "vitest";
import { getMemorySearchManager, type MemoryIndexManager } from "./index.js";
const embedBatch = vi.fn(async () => []);
const embedQuery = vi.fn(async () => [0.5, 0.5, 0.5]);
vi.mock("./embeddings.js", () => ({
createEmbeddingProvider: async () => ({
requestedProvider: "openai",
provider: {
id: "openai",
model: "text-embedding-3-small",
embedQuery,
embedBatch,
},
openAi: {
baseUrl: "https://api.openai.com/v1",
headers: { Authorization: "Bearer test", "Content-Type": "application/json" },
model: "text-embedding-3-small",
},
}),
}));
describe("memory indexing with OpenAI batches", () => {
let workspaceDir: string;
let indexPath: string;
let manager: MemoryIndexManager | null = null;
beforeEach(async () => {
embedBatch.mockClear();
embedQuery.mockClear();
workspaceDir = await fs.mkdtemp(path.join(os.tmpdir(), "clawdbot-mem-batch-"));
indexPath = path.join(workspaceDir, "index.sqlite");
await fs.mkdir(path.join(workspaceDir, "memory"));
});
afterEach(async () => {
vi.unstubAllGlobals();
if (manager) {
await manager.close();
manager = null;
}
await fs.rm(workspaceDir, { recursive: true, force: true });
});
it("uses OpenAI batch uploads when enabled", async () => {
const content = ["hello", "from", "batch"].join("\n\n");
await fs.writeFile(path.join(workspaceDir, "memory", "2026-01-07.md"), content);
let uploadedRequests: Array<{ custom_id?: string }> = [];
const fetchMock = vi.fn(async (input: RequestInfo | URL, init?: RequestInit) => {
const url =
typeof input === "string"
? input
: input instanceof URL
? input.toString()
: input.url;
if (url.endsWith("/files")) {
const body = init?.body;
if (!(body instanceof FormData)) {
throw new Error("expected FormData upload");
}
for (const [key, value] of body.entries()) {
if (key !== "file") continue;
if (typeof value === "string") {
uploadedRequests = value
.split("\n")
.filter(Boolean)
.map((line) => JSON.parse(line) as { custom_id?: string });
} else {
const text = await value.text();
uploadedRequests = text
.split("\n")
.filter(Boolean)
.map((line) => JSON.parse(line) as { custom_id?: string });
}
}
return new Response(JSON.stringify({ id: "file_1" }), {
status: 200,
headers: { "Content-Type": "application/json" },
});
}
if (url.endsWith("/batches")) {
return new Response(JSON.stringify({ id: "batch_1", status: "in_progress" }), {
status: 200,
headers: { "Content-Type": "application/json" },
});
}
if (url.endsWith("/batches/batch_1")) {
return new Response(
JSON.stringify({ id: "batch_1", status: "completed", output_file_id: "file_out" }),
{ status: 200, headers: { "Content-Type": "application/json" } },
);
}
if (url.endsWith("/files/file_out/content")) {
const lines = uploadedRequests.map((request, index) =>
JSON.stringify({
custom_id: request.custom_id,
response: {
status_code: 200,
body: { data: [{ embedding: [index + 1, 0, 0], index: 0 }] },
},
}),
);
return new Response(lines.join("\n"), {
status: 200,
headers: { "Content-Type": "application/jsonl" },
});
}
throw new Error(`unexpected fetch ${url}`);
});
vi.stubGlobal("fetch", fetchMock);
const cfg = {
agents: {
defaults: {
workspace: workspaceDir,
memorySearch: {
provider: "openai",
model: "text-embedding-3-small",
store: { path: indexPath },
sync: { watch: false, onSessionStart: false, onSearch: false },
query: { minScore: 0 },
remote: { batch: { enabled: true, wait: true } },
},
},
list: [{ id: "main", default: true }],
},
};
const result = await getMemorySearchManager({ cfg, agentId: "main" });
expect(result.manager).not.toBeNull();
if (!result.manager) throw new Error("manager missing");
manager = result.manager;
await manager.sync({ force: true });
const status = manager.status();
expect(status.chunks).toBeGreaterThan(0);
expect(embedBatch).not.toHaveBeenCalled();
expect(fetchMock).toHaveBeenCalled();
});
});

View File

@@ -24,7 +24,7 @@ vi.mock("./embeddings.js", () => {
model: "mock-embed",
embedQuery: async () => [0, 0, 0],
embedBatch: async () => {
throw new Error("openai embeddings failed: 429 insufficient_quota");
throw new Error("openai embeddings failed: 400 bad request");
},
},
}),

View File

@@ -16,6 +16,7 @@ import {
createEmbeddingProvider,
type EmbeddingProvider,
type EmbeddingProviderResult,
type OpenAiEmbeddingClient,
} from "./embeddings.js";
import {
buildFileEntry,
@@ -73,6 +74,35 @@ type MemorySyncProgressState = {
report: (update: MemorySyncProgressUpdate) => void;
};
type OpenAiBatchRequest = {
custom_id: string;
method: "POST";
url: "/v1/embeddings";
body: {
model: string;
input: string;
};
};
type OpenAiBatchStatus = {
id?: string;
status?: string;
output_file_id?: string | null;
error_file_id?: string | null;
};
type OpenAiBatchOutputLine = {
custom_id?: string;
response?: {
status_code?: number;
body?: {
data?: Array<{ embedding?: number[]; index?: number }>;
error?: { message?: string };
};
};
error?: { message?: string };
};
const META_KEY = "memory_index_meta_v1";
const SNIPPET_MAX_CHARS = 700;
const VECTOR_TABLE = "chunks_vec";
@@ -83,6 +113,9 @@ const EMBEDDING_INDEX_CONCURRENCY = 4;
const EMBEDDING_RETRY_MAX_ATTEMPTS = 3;
const EMBEDDING_RETRY_BASE_DELAY_MS = 500;
const EMBEDDING_RETRY_MAX_DELAY_MS = 8000;
const OPENAI_BATCH_ENDPOINT = "/v1/embeddings";
const OPENAI_BATCH_COMPLETION_WINDOW = "24h";
const OPENAI_BATCH_MAX_REQUESTS = 50000;
const log = createSubsystemLogger("memory");
@@ -100,6 +133,13 @@ export class MemoryIndexManager {
private readonly provider: EmbeddingProvider;
private readonly requestedProvider: "openai" | "local";
private readonly fallbackReason?: string;
private readonly openAi?: OpenAiEmbeddingClient;
private readonly batch: {
enabled: boolean;
wait: boolean;
pollIntervalMs: number;
timeoutMs: number;
};
private readonly db: DatabaseSync;
private readonly sources: Set<MemorySource>;
private readonly vector: {
@@ -170,6 +210,7 @@ export class MemoryIndexManager {
this.provider = params.providerResult.provider;
this.requestedProvider = params.providerResult.requestedProvider;
this.fallbackReason = params.providerResult.fallbackReason;
this.openAi = params.providerResult.openAi;
this.sources = new Set(params.settings.sources);
this.db = this.openDatabase();
this.ensureSchema();
@@ -189,6 +230,13 @@ export class MemoryIndexManager {
if (this.sources.has("sessions")) {
this.sessionsDirty = true;
}
const batch = params.settings.remote?.batch;
this.batch = {
enabled: Boolean(batch?.enabled && this.openAi && this.provider.id === "openai"),
wait: batch?.wait ?? true,
pollIntervalMs: batch?.pollIntervalMs ?? 5000,
timeoutMs: (batch?.timeoutMinutes ?? 60) * 60 * 1000,
};
}
async warmSession(sessionKey?: string): Promise<void> {
@@ -712,7 +760,7 @@ export class MemoryIndexManager {
});
}
});
await this.runWithConcurrency(tasks, EMBEDDING_INDEX_CONCURRENCY);
await this.runWithConcurrency(tasks, this.getIndexConcurrency());
const staleRows = this.db
.prepare(`SELECT path FROM files WHERE source = ?`)
@@ -784,7 +832,7 @@ export class MemoryIndexManager {
});
}
});
await this.runWithConcurrency(tasks, EMBEDDING_INDEX_CONCURRENCY);
await this.runWithConcurrency(tasks, this.getIndexConcurrency());
const staleRows = this.db
.prepare(`SELECT path FROM files WHERE source = ?`)
@@ -1035,6 +1083,271 @@ export class MemoryIndexManager {
return embeddings;
}
private getOpenAiBaseUrl(): string {
return this.openAi?.baseUrl?.replace(/\/$/, "") ?? "";
}
private getOpenAiHeaders(params: { json: boolean }): Record<string, string> {
const headers = this.openAi?.headers ? { ...this.openAi.headers } : {};
if (params.json) {
if (!headers["Content-Type"] && !headers["content-type"]) {
headers["Content-Type"] = "application/json";
}
} else {
delete headers["Content-Type"];
delete headers["content-type"];
}
return headers;
}
private buildOpenAiBatchRequests(
chunks: MemoryChunk[],
entry: MemoryFileEntry | SessionFileEntry,
source: MemorySource,
): { requests: OpenAiBatchRequest[]; mapping: Map<string, number> } {
const requests: OpenAiBatchRequest[] = [];
const mapping = new Map<string, number>();
for (let i = 0; i < chunks.length; i += 1) {
const chunk = chunks[i];
const customId = hashText(
`${source}:${entry.path}:${chunk.startLine}:${chunk.endLine}:${chunk.hash}:${i}`,
);
mapping.set(customId, i);
requests.push({
custom_id: customId,
method: "POST",
url: OPENAI_BATCH_ENDPOINT,
body: {
model: this.openAi?.model ?? this.provider.model,
input: chunk.text,
},
});
}
return { requests, mapping };
}
private splitOpenAiBatchRequests(requests: OpenAiBatchRequest[]): OpenAiBatchRequest[][] {
if (requests.length <= OPENAI_BATCH_MAX_REQUESTS) return [requests];
const groups: OpenAiBatchRequest[][] = [];
for (let i = 0; i < requests.length; i += OPENAI_BATCH_MAX_REQUESTS) {
groups.push(requests.slice(i, i + OPENAI_BATCH_MAX_REQUESTS));
}
return groups;
}
private async submitOpenAiBatch(requests: OpenAiBatchRequest[]): Promise<OpenAiBatchStatus> {
if (!this.openAi) {
throw new Error("OpenAI batch requested without an OpenAI embedding client.");
}
const baseUrl = this.getOpenAiBaseUrl();
const jsonl = requests.map((request) => JSON.stringify(request)).join("\n");
const form = new FormData();
form.append("purpose", "batch");
form.append(
"file",
new Blob([jsonl], { type: "application/jsonl" }),
"memory-embeddings.jsonl",
);
const fileRes = await fetch(`${baseUrl}/files`, {
method: "POST",
headers: this.getOpenAiHeaders({ json: false }),
body: form,
});
if (!fileRes.ok) {
const text = await fileRes.text();
throw new Error(`openai batch file upload failed: ${fileRes.status} ${text}`);
}
const filePayload = (await fileRes.json()) as { id?: string };
if (!filePayload.id) {
throw new Error("openai batch file upload failed: missing file id");
}
const batchRes = await fetch(`${baseUrl}/batches`, {
method: "POST",
headers: this.getOpenAiHeaders({ json: true }),
body: JSON.stringify({
input_file_id: filePayload.id,
endpoint: OPENAI_BATCH_ENDPOINT,
completion_window: OPENAI_BATCH_COMPLETION_WINDOW,
metadata: {
source: "clawdbot-memory",
agent: this.agentId,
},
}),
});
if (!batchRes.ok) {
const text = await batchRes.text();
throw new Error(`openai batch create failed: ${batchRes.status} ${text}`);
}
return (await batchRes.json()) as OpenAiBatchStatus;
}
private async fetchOpenAiBatchStatus(batchId: string): Promise<OpenAiBatchStatus> {
const baseUrl = this.getOpenAiBaseUrl();
const res = await fetch(`${baseUrl}/batches/${batchId}`, {
headers: this.getOpenAiHeaders({ json: true }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`openai batch status failed: ${res.status} ${text}`);
}
return (await res.json()) as OpenAiBatchStatus;
}
private async fetchOpenAiFileContent(fileId: string): Promise<string> {
const baseUrl = this.getOpenAiBaseUrl();
const res = await fetch(`${baseUrl}/files/${fileId}/content`, {
headers: this.getOpenAiHeaders({ json: true }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`openai batch file content failed: ${res.status} ${text}`);
}
return await res.text();
}
private parseOpenAiBatchOutput(text: string): OpenAiBatchOutputLine[] {
if (!text.trim()) return [];
return text
.split("\n")
.map((line) => line.trim())
.filter(Boolean)
.map((line) => JSON.parse(line) as OpenAiBatchOutputLine);
}
private async readOpenAiBatchError(errorFileId: string): Promise<string | undefined> {
try {
const content = await this.fetchOpenAiFileContent(errorFileId);
const lines = this.parseOpenAiBatchOutput(content);
const first = lines.find((line) => line.error?.message || line.response?.body?.error);
const message =
first?.error?.message ??
(typeof first?.response?.body?.error?.message === "string"
? first?.response?.body?.error?.message
: undefined);
return message;
} catch (err) {
const message = err instanceof Error ? err.message : String(err);
return message ? `error file unavailable: ${message}` : undefined;
}
}
private async waitForOpenAiBatch(
batchId: string,
initial?: OpenAiBatchStatus,
): Promise<{ outputFileId: string; errorFileId?: string }> {
const start = Date.now();
let current: OpenAiBatchStatus | undefined = initial;
while (true) {
const status = current ?? (await this.fetchOpenAiBatchStatus(batchId));
const state = status.status ?? "unknown";
if (state === "completed") {
if (!status.output_file_id) {
throw new Error(`openai batch ${batchId} completed without output file`);
}
return {
outputFileId: status.output_file_id,
errorFileId: status.error_file_id ?? undefined,
};
}
if (["failed", "expired", "cancelled", "canceled"].includes(state)) {
const detail = status.error_file_id
? await this.readOpenAiBatchError(status.error_file_id)
: undefined;
const suffix = detail ? `: ${detail}` : "";
throw new Error(`openai batch ${batchId} ${state}${suffix}`);
}
if (!this.batch.wait) {
throw new Error(`openai batch ${batchId} still ${state}; wait disabled`);
}
if (Date.now() - start > this.batch.timeoutMs) {
throw new Error(`openai batch ${batchId} timed out after ${this.batch.timeoutMs}ms`);
}
await new Promise((resolve) => setTimeout(resolve, this.batch.pollIntervalMs));
current = undefined;
}
}
private async embedChunksWithBatch(
chunks: MemoryChunk[],
entry: MemoryFileEntry | SessionFileEntry,
source: MemorySource,
): Promise<number[][]> {
if (!this.openAi) {
return this.embedChunksInBatches(chunks);
}
if (chunks.length === 0) return [];
const { requests, mapping } = this.buildOpenAiBatchRequests(chunks, entry, source);
const groups = this.splitOpenAiBatchRequests(requests);
const embeddings: number[][] = Array.from({ length: chunks.length }, () => []);
for (const group of groups) {
const batchInfo = await this.submitOpenAiBatch(group);
if (!batchInfo.id) {
throw new Error("openai batch create failed: missing batch id");
}
if (!this.batch.wait && batchInfo.status !== "completed") {
throw new Error(
`openai batch ${batchInfo.id} submitted; enable remote.batch.wait to await completion`,
);
}
const completed =
batchInfo.status === "completed"
? {
outputFileId: batchInfo.output_file_id ?? "",
errorFileId: batchInfo.error_file_id ?? undefined,
}
: await this.waitForOpenAiBatch(batchInfo.id, batchInfo);
if (!completed.outputFileId) {
throw new Error(`openai batch ${batchInfo.id} completed without output file`);
}
const content = await this.fetchOpenAiFileContent(completed.outputFileId);
const outputLines = this.parseOpenAiBatchOutput(content);
const errors: string[] = [];
const remaining = new Set(group.map((request) => request.custom_id));
for (const line of outputLines) {
const customId = line.custom_id;
if (!customId) continue;
const index = mapping.get(customId);
if (index === undefined) continue;
remaining.delete(customId);
if (line.error?.message) {
errors.push(`${customId}: ${line.error.message}`);
continue;
}
const response = line.response;
const statusCode = response?.status_code ?? 0;
if (statusCode >= 400) {
const message =
response?.body?.error?.message ??
(typeof response?.body === "string" ? response.body : undefined) ??
"unknown error";
errors.push(`${customId}: ${message}`);
continue;
}
const data = response?.body?.data ?? [];
const embedding = data[0]?.embedding ?? [];
if (embedding.length === 0) {
errors.push(`${customId}: empty embedding`);
continue;
}
embeddings[index] = embedding;
}
if (errors.length > 0) {
throw new Error(`openai batch ${batchInfo.id} failed: ${errors.join("; ")}`);
}
if (remaining.size > 0) {
throw new Error(
`openai batch ${batchInfo.id} missing ${remaining.size} embedding responses`,
);
}
}
return embeddings;
}
private async embedBatchWithRetry(texts: string[]): Promise<number[][]> {
if (texts.length === 0) return [];
let attempt = 0;
@@ -1068,7 +1381,7 @@ export class MemoryIndexManager {
const resolvedLimit = Math.max(1, Math.min(limit, tasks.length));
const results: T[] = Array.from({ length: tasks.length });
let next = 0;
let firstError: unknown | null = null;
let firstError: unknown = null;
const workers = Array.from({ length: resolvedLimit }, async () => {
while (true) {
@@ -1090,6 +1403,10 @@ export class MemoryIndexManager {
return results;
}
private getIndexConcurrency(): number {
return this.batch.enabled ? 1 : EMBEDDING_INDEX_CONCURRENCY;
}
private async indexFile(
entry: MemoryFileEntry | SessionFileEntry,
options: { source: MemorySource; content?: string },
@@ -1098,7 +1415,9 @@ export class MemoryIndexManager {
const chunks = chunkMarkdown(content, this.settings.chunking).filter(
(chunk) => chunk.text.trim().length > 0,
);
const embeddings = await this.embedChunksInBatches(chunks);
const embeddings = this.batch.enabled
? await this.embedChunksWithBatch(chunks, entry, options.source)
: await this.embedChunksInBatches(chunks);
const sample = embeddings.find((embedding) => embedding.length > 0);
const vectorReady = sample ? await this.ensureVectorReady(sample.length) : false;
const now = Date.now();