Files
clawdbot/docs/concepts/memory.md
2026-01-17 23:29:40 +00:00

240 lines
9.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
summary: "How Clawdbot memory works (workspace files + automatic memory flush)"
read_when:
- You want the memory file layout and workflow
- You want to tune the automatic pre-compaction memory flush
---
# Memory
Clawdbot memory is **plain Markdown in the agent workspace**. The files are the
source of truth; the model only "remembers" what gets written to disk.
## Memory files (Markdown)
The default workspace layout uses two memory layers:
- `memory/YYYY-MM-DD.md`
- Daily log (append-only).
- Read today + yesterday at session start.
- `MEMORY.md` (optional)
- Curated long-term memory.
- **Only load in the main, private session** (never in group contexts).
These files live under the workspace (`agents.defaults.workspace`, default
`~/clawd`). See [Agent workspace](/concepts/agent-workspace) for the full layout.
## When to write memory
- Decisions, preferences, and durable facts go to `MEMORY.md`.
- Day-to-day notes and running context go to `memory/YYYY-MM-DD.md`.
- If someone says "remember this," write it down (do not keep it in RAM).
## Automatic memory flush (pre-compaction ping)
When a session is **close to auto-compaction**, Clawdbot triggers a **silent,
agentic turn** that reminds the model to write durable memory **before** the
context is compacted. The default prompts explicitly say the model *may reply*,
but usually `NO_REPLY` is the correct response so the user never sees this turn.
This is controlled by `agents.defaults.compaction.memoryFlush`:
```json5
{
agents: {
defaults: {
compaction: {
reserveTokensFloor: 20000,
memoryFlush: {
enabled: true,
softThresholdTokens: 4000,
systemPrompt: "Session nearing compaction. Store durable memories now.",
prompt: "Write any lasting notes to memory/YYYY-MM-DD.md; reply with NO_REPLY if nothing to store."
}
}
}
}
}
```
Details:
- **Soft threshold**: flush triggers when the session token estimate crosses
`contextWindow - reserveTokensFloor - softThresholdTokens`.
- **Silent** by default: prompts include `NO_REPLY` so nothing is delivered.
- **Two prompts**: a user prompt plus a system prompt append the reminder.
- **One flush per compaction cycle** (tracked in `sessions.json`).
- **Workspace must be writable**: if the session runs sandboxed with
`workspaceAccess: "ro"` or `"none"`, the flush is skipped.
For the full compaction lifecycle, see
[Session management + compaction](/reference/session-management-compaction).
## Vector memory search
Clawdbot can build a small vector index over `MEMORY.md` and `memory/*.md` so
semantic queries can find related notes even when wording differs.
Defaults:
- Enabled by default.
- Watches memory files for changes (debounced).
- Uses remote embeddings (OpenAI) unless configured for local.
- Local mode uses node-llama-cpp and may require `pnpm approve-builds`.
- Uses sqlite-vec (when available) to accelerate vector search inside SQLite.
Remote embeddings **require** an API key for the embedding provider. By default
this is OpenAI (`OPENAI_API_KEY` or `models.providers.openai.apiKey`). Codex
OAuth only covers chat/completions and does **not** satisfy embeddings for
memory search. When using a custom OpenAI-compatible endpoint, set
`memorySearch.remote.apiKey` (and optional `memorySearch.remote.headers`).
If you want to use a **custom OpenAI-compatible endpoint** (like Gemini, OpenRouter, or a proxy),
you can use the `remote` configuration:
```json5
agents: {
defaults: {
memorySearch: {
provider: "openai",
model: "text-embedding-3-small",
remote: {
baseUrl: "https://generativelanguage.googleapis.com/v1beta/openai/",
apiKey: "YOUR_GEMINI_API_KEY",
headers: { "X-Custom-Header": "value" }
}
}
}
}
```
If you don't want to set an API key, use `memorySearch.provider = "local"` or set
`memorySearch.fallback = "none"`.
Batch indexing (OpenAI only):
- Enabled by default for OpenAI embeddings. Set `agents.defaults.memorySearch.remote.batch.enabled = false` to disable.
- Default behavior waits for batch completion; tune `remote.batch.wait`, `remote.batch.pollIntervalMs`, and `remote.batch.timeoutMinutes` if needed.
- Batch mode currently applies only when `memorySearch.provider = "openai"` and uses your OpenAI API key.
Config example:
```json5
agents: {
defaults: {
memorySearch: {
provider: "openai",
model: "text-embedding-3-small",
fallback: "openai",
remote: {
batch: { enabled: false }
},
sync: { watch: true }
}
}
}
```
Tools:
- `memory_search` — returns snippets with file + line ranges.
- `memory_get` — read memory file content by path.
Local mode:
- Set `agents.defaults.memorySearch.provider = "local"`.
- Provide `agents.defaults.memorySearch.local.modelPath` (GGUF or `hf:` URI).
- Optional: set `agents.defaults.memorySearch.fallback = "none"` to avoid remote fallback.
### How the memory tools work
- `memory_search` semantically searches Markdown chunks (~400 token target, 80-token overlap) from `MEMORY.md` + `memory/**/*.md`. It returns snippet text (capped ~700 chars), file path, line range, score, provider/model, and whether we fell back from local → remote embeddings. No full file payload is returned.
- `memory_get` reads a specific memory Markdown file (workspace-relative), optionally from a starting line and for N lines. Paths outside `MEMORY.md` / `memory/` are rejected.
- Both tools are enabled only when `memorySearch.enabled` resolves true for the agent.
### What gets indexed (and when)
- File type: Markdown only (`MEMORY.md`, `memory/**/*.md`).
- Index storage: per-agent SQLite at `~/.clawdbot/state/memory/<agentId>.sqlite` (configurable via `agents.defaults.memorySearch.store.path`, supports `{agentId}` token).
- Freshness: watcher on `MEMORY.md` + `memory/` marks the index dirty (debounce 1.5s). Sync runs on session start, on first search when dirty, and optionally on an interval. Reindex triggers when embedding model/provider or chunk sizes change.
### Session memory search (experimental)
You can optionally index **session transcripts** and surface them via `memory_search`.
This is gated behind an experimental flag.
```json5
agents: {
defaults: {
memorySearch: {
experimental: { sessionMemory: true },
sources: ["memory", "sessions"]
}
}
}
```
Notes:
- Session indexing is **opt-in** (off by default).
- Session updates are debounced and indexed lazily on the next `memory_search` (or manual `clawdbot memory index`).
- Results still include snippets only; `memory_get` remains limited to memory files.
- Session indexing is isolated per agent (only that agents session logs are indexed).
- Session logs live on disk (`~/.clawdbot/agents/<agentId>/sessions/*.jsonl`). Any process/user with filesystem access can read them, so treat disk access as the trust boundary. For stricter isolation, run agents under separate OS users or hosts.
### SQLite vector acceleration (sqlite-vec)
When the sqlite-vec extension is available, Clawdbot stores embeddings in a
SQLite virtual table (`vec0`) and performs vector distance queries in the
database. This keeps search fast without loading every embedding into JS.
Configuration (optional):
```json5
agents: {
defaults: {
memorySearch: {
store: {
vector: {
enabled: true,
extensionPath: "/path/to/sqlite-vec"
}
}
}
}
}
```
Notes:
- `enabled` defaults to true; when disabled, search falls back to in-process
cosine similarity over stored embeddings.
- If the sqlite-vec extension is missing or fails to load, Clawdbot logs the
error and continues with the JS fallback (no vector table).
- `extensionPath` overrides the bundled sqlite-vec path (useful for custom builds
or non-standard install locations).
### Local embedding auto-download
- Default local embedding model: `hf:ggml-org/embeddinggemma-300M-GGUF/embeddinggemma-300M-Q8_0.gguf` (~0.6 GB).
- When `memorySearch.provider = "local"`, `node-llama-cpp` resolves `modelPath`; if the GGUF is missing it **auto-downloads** to the cache (or `local.modelCacheDir` if set), then loads it. Downloads resume on retry.
- Native build requirement: run `pnpm approve-builds`, pick `node-llama-cpp`, then `pnpm rebuild node-llama-cpp`.
- Fallback: if local setup fails and `memorySearch.fallback = "openai"`, we automatically switch to remote embeddings (`openai/text-embedding-3-small` unless overridden) and record the reason.
### Custom OpenAI-compatible endpoint example
```json5
agents: {
defaults: {
memorySearch: {
provider: "openai",
model: "text-embedding-3-small",
remote: {
baseUrl: "https://api.example.com/v1/",
apiKey: "YOUR_REMOTE_API_KEY",
headers: {
"X-Organization": "org-id",
"X-Project": "project-id"
}
}
}
}
}
```
Notes:
- `remote.*` takes precedence over `models.providers.openai.*`.
- `remote.headers` merge with OpenAI headers; remote wins on key conflicts. Omit `remote.headers` to use the OpenAI defaults.