Files
clawdbot/docs/concepts/memory.md

152 lines
6.1 KiB
Markdown

---
summary: "How Clawdbot memory works (workspace files + automatic memory flush)"
read_when:
- You want the memory file layout and workflow
- You want to tune the automatic pre-compaction memory flush
---
# Memory
Clawdbot memory is **plain Markdown in the agent workspace**. The files are the
source of truth; the model only "remembers" what gets written to disk.
## Memory files (Markdown)
The default workspace layout uses two memory layers:
- `memory/YYYY-MM-DD.md`
- Daily log (append-only).
- Read today + yesterday at session start.
- `MEMORY.md` (optional)
- Curated long-term memory.
- **Only load in the main, private session** (never in group contexts).
These files live under the workspace (`agents.defaults.workspace`, default
`~/clawd`). See [Agent workspace](/concepts/agent-workspace) for the full layout.
## When to write memory
- Decisions, preferences, and durable facts go to `MEMORY.md`.
- Day-to-day notes and running context go to `memory/YYYY-MM-DD.md`.
- If someone says "remember this," write it down (do not keep it in RAM).
## Automatic memory flush (pre-compaction ping)
When a session is **close to auto-compaction**, Clawdbot triggers a **silent,
agentic turn** that reminds the model to write durable memory **before** the
context is compacted. The default prompts explicitly say the model *may reply*,
but usually `NO_REPLY` is the correct response so the user never sees this turn.
This is controlled by `agents.defaults.compaction.memoryFlush`:
```json5
{
agents: {
defaults: {
compaction: {
reserveTokensFloor: 20000,
memoryFlush: {
enabled: true,
softThresholdTokens: 4000,
systemPrompt: "Session nearing compaction. Store durable memories now.",
prompt: "Write any lasting notes to memory/YYYY-MM-DD.md; reply with NO_REPLY if nothing to store."
}
}
}
}
}
```
Details:
- **Soft threshold**: flush triggers when the session token estimate crosses
`contextWindow - reserveTokensFloor - softThresholdTokens`.
- **Silent** by default: prompts include `NO_REPLY` so nothing is delivered.
- **Two prompts**: a user prompt plus a system prompt append the reminder.
- **One flush per compaction cycle** (tracked in `sessions.json`).
- **Workspace must be writable**: if the session runs sandboxed with
`workspaceAccess: "ro"` or `"none"`, the flush is skipped.
For the full compaction lifecycle, see
[Session management + compaction](/reference/session-management-compaction).
## Vector memory search
Clawdbot can build a small vector index over `MEMORY.md` and `memory/*.md` so
semantic queries can find related notes even when wording differs.
Defaults:
- Enabled by default.
- Watches memory files for changes (debounced).
- Uses remote embeddings (OpenAI) unless configured for local.
- Local mode uses node-llama-cpp and may require `pnpm approve-builds`.
Remote embeddings **require** an API key for the embedding provider. By default
this is OpenAI (`OPENAI_API_KEY` or `models.providers.openai.apiKey`). Codex
OAuth only covers chat/completions and does **not** satisfy embeddings for
memory search. When using a custom OpenAI-compatible endpoint, set
`memorySearch.remote.apiKey` (and optional `memorySearch.remote.headers`).
If you want to use a **custom OpenAI-compatible endpoint** (like Gemini, OpenRouter, or a proxy),
you can use the `remote` configuration:
```json5
agents: {
defaults: {
memorySearch: {
provider: "openai",
model: "text-embedding-3-small",
remote: {
baseUrl: "https://generativelanguage.googleapis.com/v1beta/openai/",
apiKey: "YOUR_GEMINI_API_KEY",
headers: { "X-Custom-Header": "value" }
}
}
}
}
```
If you don't want to set an API key, use `memorySearch.provider = "local"` or set
`memorySearch.fallback = "none"`.
Config example:
```json5
agents: {
defaults: {
memorySearch: {
provider: "openai",
model: "text-embedding-3-small",
fallback: "openai",
sync: { watch: true }
}
}
}
```
Tools:
- `memory_search` — returns snippets with file + line ranges.
- `memory_get` — read memory file content by path.
Local mode:
- Set `agents.defaults.memorySearch.provider = "local"`.
- Provide `agents.defaults.memorySearch.local.modelPath` (GGUF or `hf:` URI).
- Optional: set `agents.defaults.memorySearch.fallback = "none"` to avoid remote fallback.
### How the memory tools work
- `memory_search` semantically searches Markdown chunks (~400 token target, 80-token overlap) from `MEMORY.md` + `memory/**/*.md`. It returns snippet text (capped ~700 chars), file path, line range, score, provider/model, and whether we fell back from local → remote embeddings. No full file payload is returned.
- `memory_get` reads a specific memory Markdown file (workspace-relative), optionally from a starting line and for N lines. Paths outside `MEMORY.md` / `memory/` are rejected.
- Both tools are enabled only when `memorySearch.enabled` resolves true for the agent.
### What gets indexed (and when)
- File type: Markdown only (`MEMORY.md`, `memory/**/*.md`).
- Index storage: per-agent SQLite at `~/.clawdbot/state/memory/<agentId>.sqlite` (configurable via `agents.defaults.memorySearch.store.path`, supports `{agentId}` token).
- Freshness: watcher on `MEMORY.md` + `memory/` marks the index dirty (debounce 1.5s). Sync runs on session start, on first search when dirty, and optionally on an interval. Reindex triggers when embedding model/provider or chunk sizes change.
### Local embedding auto-download
- Default local embedding model: `hf:ggml-org/embeddinggemma-300M-GGUF/embeddinggemma-300M-Q8_0.gguf` (~0.6 GB).
- When `memorySearch.provider = "local"`, `node-llama-cpp` resolves `modelPath`; if the GGUF is missing it **auto-downloads** to the cache (or `local.modelCacheDir` if set), then loads it. Downloads resume on retry.
- Native build requirement: run `pnpm approve-builds`, pick `node-llama-cpp`, then `pnpm rebuild node-llama-cpp`.
- Fallback: if local setup fails and `memorySearch.fallback = "openai"`, we automatically switch to remote embeddings (`openai/text-embedding-3-small` unless overridden) and record the reason.