开发基于图片素材生成视频的webui功能

This commit is contained in:
puke
2025-12-04 11:14:14 +08:00
parent ea784e0d06
commit 7425b9d23d
8 changed files with 896 additions and 104 deletions

View File

@@ -27,23 +27,27 @@ Example:
result = await pipeline(
assets=["/path/img1.jpg", "/path/img2.jpg"],
video_title="Pet Store Year-End Sale",
style="warm and friendly",
intent="Promote our pet store's year-end sale with a warm and friendly tone",
duration=30
)
"""
from typing import List, Dict, Any, Optional
from typing import List, Dict, Any, Optional, Callable
from pathlib import Path
from loguru import logger
from pydantic import BaseModel, Field
from pixelle_video.pipelines.linear import LinearVideoPipeline, PipelineContext
from pixelle_video.models.progress import ProgressEvent
from pixelle_video.utils.os_util import (
create_task_output_dir,
get_task_final_video_path
)
# Type alias for progress callback
ProgressCallback = Optional[Callable[[ProgressEvent], None]]
# ==================== Structured Output Models ====================
@@ -82,12 +86,12 @@ class AssetBasedPipeline(LinearVideoPipeline):
assets: List[str],
video_title: str = "",
intent: Optional[str] = None,
style: str = "professional and engaging",
duration: int = 30,
source: str = "runninghub",
bgm_path: Optional[str] = None,
bgm_volume: float = 0.2,
bgm_mode: str = "loop",
progress_callback: ProgressCallback = None,
**kwargs
) -> PipelineContext:
"""
@@ -97,12 +101,12 @@ class AssetBasedPipeline(LinearVideoPipeline):
assets: List of asset file paths
video_title: Video title
intent: Video intent/purpose (defaults to video_title)
style: Video style
duration: Target duration in seconds
source: Workflow source ("runninghub" or "selfhost")
bgm_path: Path to background music file (optional)
bgm_volume: BGM volume (0.0-1.0, default 0.2)
bgm_mode: BGM mode ("loop" or "once", default "loop")
progress_callback: Optional callback for progress updates
**kwargs: Additional parameters
Returns:
@@ -110,6 +114,9 @@ class AssetBasedPipeline(LinearVideoPipeline):
"""
from pixelle_video.pipelines.linear import PipelineContext
# Store progress callback
self._progress_callback = progress_callback
# Create custom context with asset-specific parameters
ctx = PipelineContext(
input_text=intent or video_title, # Use intent or title as input_text
@@ -117,7 +124,6 @@ class AssetBasedPipeline(LinearVideoPipeline):
"assets": assets,
"video_title": video_title,
"intent": intent or video_title,
"style": style,
"duration": duration,
"source": source,
"bgm_path": bgm_path,
@@ -147,6 +153,11 @@ class AssetBasedPipeline(LinearVideoPipeline):
await self.handle_exception(ctx, e)
raise
def _emit_progress(self, event: ProgressEvent):
"""Emit progress event to callback if available"""
if self._progress_callback:
self._progress_callback(event)
async def setup_environment(self, context: PipelineContext) -> PipelineContext:
"""
Analyze uploaded assets and build asset index
@@ -172,7 +183,17 @@ class AssetBasedPipeline(LinearVideoPipeline):
if not assets:
raise ValueError("No assets provided. Please upload at least one image or video.")
logger.info(f"Found {len(assets)} assets to analyze")
total_assets = len(assets)
logger.info(f"Found {total_assets} assets to analyze")
# Emit initial progress (0-15% for asset analysis)
self._emit_progress(ProgressEvent(
event_type="analyzing_assets",
progress=0.01,
frame_current=0,
frame_total=total_assets,
extra_info="start"
))
self.asset_index = {}
@@ -183,7 +204,17 @@ class AssetBasedPipeline(LinearVideoPipeline):
logger.warning(f"Asset not found: {asset_path}")
continue
logger.info(f"Analyzing asset {i}/{len(assets)}: {asset_path_obj.name}")
logger.info(f"Analyzing asset {i}/{total_assets}: {asset_path_obj.name}")
# Emit progress for this asset
progress = 0.01 + (i - 1) / total_assets * 0.14 # 1% - 15%
self._emit_progress(ProgressEvent(
event_type="analyzing_asset",
progress=progress,
frame_current=i,
frame_total=total_assets,
extra_info=asset_path_obj.name
))
# Determine asset type
asset_type = self._get_asset_type(asset_path_obj)
@@ -222,34 +253,35 @@ class AssetBasedPipeline(LinearVideoPipeline):
# Store asset index in context
context.asset_index = self.asset_index
# Emit completion of asset analysis
self._emit_progress(ProgressEvent(
event_type="analyzing_assets",
progress=0.15,
frame_current=total_assets,
frame_total=total_assets,
extra_info="complete"
))
return context
async def determine_title(self, context: PipelineContext) -> PipelineContext:
"""
Use user-provided title or generate one via LLM
Use user-provided title if available, otherwise leave empty
Args:
context: Pipeline context
Returns:
Updated context with title
Updated context with title (may be empty)
"""
from pixelle_video.utils.content_generators import generate_title
title = context.request.get("video_title")
if title:
context.title = title
logger.info(f"📝 Video title: {title} (user-specified)")
else:
# Generate title from intent using LLM
intent = context.request.get("intent", context.input_text)
context.title = await generate_title(
self.core.llm,
content=intent,
strategy="llm"
)
logger.info(f"📝 Video title: {context.title} (LLM-generated)")
context.title = ""
logger.info(f"📝 No video title specified (will be hidden in template)")
return context
@@ -267,10 +299,16 @@ class AssetBasedPipeline(LinearVideoPipeline):
"""
logger.info("🤖 Generating video script with LLM...")
# Emit progress for script generation (15% - 25%)
self._emit_progress(ProgressEvent(
event_type="generating_script",
progress=0.16
))
# Build prompt for LLM
intent = context.request.get("intent", context.title)
style = context.request.get("style", "professional and engaging")
intent = context.request.get("intent", context.input_text)
duration = context.request.get("duration", 30)
title = context.title # May be empty if user didn't provide one
# Prepare asset descriptions with full paths for LLM to reference
asset_info = []
@@ -279,11 +317,13 @@ class AssetBasedPipeline(LinearVideoPipeline):
assets_text = "\n".join(asset_info)
# Build title section for prompt (only if title is provided)
title_section = f"- Video Title: {title}\n" if title else ""
prompt = f"""You are a video script writer. Generate a {duration}-second video script.
## Requirements
- Intent: {intent}
- Style: {style}
{title_section}- Intent: {intent}
- Target Duration: {duration} seconds
## Available Assets (use the exact path in your response)
@@ -295,6 +335,7 @@ class AssetBasedPipeline(LinearVideoPipeline):
3. Each scene can have 1-5 narration sentences
4. Try to use all available assets, but it's OK to reuse if needed
5. Total duration of all scenes should be approximately {duration} seconds
{f"6. The narrations should align with the video title: {title}" if title else ""}
## Output Requirements
For each scene, provide:
@@ -337,6 +378,13 @@ Generate the video script now:"""
logger.success(f"✅ Generated script with {len(context.script)} scenes")
# Emit progress after script generation
self._emit_progress(ProgressEvent(
event_type="generating_script",
progress=0.25,
extra_info="complete"
))
# Log script preview
for scene in context.script:
narrations = scene.get("narrations", [])
@@ -413,7 +461,7 @@ Generate the video script now:"""
context.narrations = all_narrations
# Get template dimensions
template_name = context.params.get("frame_template", "1080x1920/image_default.html")
template_name = "1080x1920/image_pure.html"
# Extract dimensions from template name (e.g., "1080x1920")
try:
dims = template_name.split("/")[0].split("x")
@@ -492,9 +540,25 @@ Generate the video script now:"""
storyboard = context.storyboard
config = context.config
total_frames = len(storyboard.frames)
# Progress range: 30% - 85% for frame production
base_progress = 0.30
progress_range = 0.55 # 85% - 30%
for i, frame in enumerate(storyboard.frames, 1):
logger.info(f"Producing scene {i}/{len(storyboard.frames)}...")
logger.info(f"Producing scene {i}/{total_frames}...")
# Emit progress for this frame (each frame has 4 steps: audio, combine, duration, compose)
frame_progress = base_progress + (i - 1) / total_frames * progress_range
self._emit_progress(ProgressEvent(
event_type="frame_step",
progress=frame_progress,
frame_current=i,
frame_total=total_frames,
step=1,
action="audio"
))
# Get scene data with narrations
scene = frame._scene_data
@@ -524,6 +588,17 @@ Generate the video script now:"""
if len(narration_audios) > 1:
from pixelle_video.utils.os_util import get_task_frame_path
# Emit progress for combining audio
frame_progress = base_progress + ((i - 1) + 0.25) / total_frames * progress_range
self._emit_progress(ProgressEvent(
event_type="frame_step",
progress=frame_progress,
frame_current=i,
frame_total=total_frames,
step=2,
action="audio"
))
combined_audio_path = Path(context.task_dir) / "frames" / f"{i:02d}_audio.mp3"
# Use FFmpeg to concatenate audio files
@@ -564,6 +639,17 @@ Generate the video script now:"""
# Since we already have the audio and image, we bypass some steps
# by manually calling the composition steps
# Emit progress for duration calculation
frame_progress = base_progress + ((i - 1) + 0.5) / total_frames * progress_range
self._emit_progress(ProgressEvent(
event_type="frame_step",
progress=frame_progress,
frame_current=i,
frame_total=total_frames,
step=3,
action="compose"
))
# Get audio duration for frame duration
import subprocess
duration_cmd = [
@@ -576,16 +662,35 @@ Generate the video script now:"""
duration_result = subprocess.run(duration_cmd, capture_output=True, text=True, check=True)
frame.duration = float(duration_result.stdout.strip())
# Emit progress for video composition
frame_progress = base_progress + ((i - 1) + 0.75) / total_frames * progress_range
self._emit_progress(ProgressEvent(
event_type="frame_step",
progress=frame_progress,
frame_current=i,
frame_total=total_frames,
step=4,
action="video"
))
# Use FrameProcessor for proper composition
processed_frame = await self.core.frame_processor(
frame=frame,
storyboard=storyboard,
config=config,
total_frames=len(storyboard.frames)
total_frames=total_frames
)
logger.success(f"✅ Scene {i} complete")
# Emit completion of frame production
self._emit_progress(ProgressEvent(
event_type="processing_frame",
progress=0.85,
frame_current=total_frames,
frame_total=total_frames
))
return context
async def post_production(self, context: PipelineContext) -> PipelineContext:
@@ -600,6 +705,12 @@ Generate the video script now:"""
"""
logger.info("🎞️ Concatenating scenes...")
# Emit progress for concatenation (85% - 95%)
self._emit_progress(ProgressEvent(
event_type="concatenating",
progress=0.86
))
# Collect video segments from storyboard frames
scene_videos = [frame.video_segment_path for frame in context.storyboard.frames]
@@ -626,6 +737,13 @@ Generate the video script now:"""
logger.success(f"✅ Final video: {final_video_path}")
# Emit completion of concatenation
self._emit_progress(ProgressEvent(
event_type="concatenating",
progress=0.95,
extra_info="complete"
))
return context
async def finalize(self, context: PipelineContext) -> PipelineContext:
@@ -641,8 +759,84 @@ Generate the video script now:"""
logger.success(f"🎉 Asset-based video generation complete!")
logger.info(f"Video: {context.final_video_path}")
# Emit completion
self._emit_progress(ProgressEvent(
event_type="completed",
progress=1.0
))
# Persist metadata for history tracking
await self._persist_task_data(context)
return context
async def _persist_task_data(self, ctx: PipelineContext):
"""
Persist task metadata and storyboard to filesystem for history tracking
"""
from pathlib import Path
try:
storyboard = ctx.storyboard
task_id = ctx.task_id
if not task_id:
logger.warning("No task_id in context, skipping persistence")
return
# Get file size
video_path_obj = Path(ctx.final_video_path)
file_size = video_path_obj.stat().st_size if video_path_obj.exists() else 0
# Build metadata
input_params = {
"text": ctx.input_text,
"mode": "asset_based",
"title": ctx.title or "",
"n_scenes": len(storyboard.frames) if storyboard else 0,
"assets": ctx.request.get("assets", []),
"intent": ctx.request.get("intent"),
"duration": ctx.request.get("duration"),
"source": ctx.request.get("source"),
"voice_id": ctx.request.get("voice_id"),
"tts_speed": ctx.request.get("tts_speed"),
}
metadata = {
"task_id": task_id,
"created_at": storyboard.created_at.isoformat() if storyboard and storyboard.created_at else None,
"completed_at": storyboard.completed_at.isoformat() if storyboard and storyboard.completed_at else None,
"status": "completed",
"input": input_params,
"result": {
"video_path": ctx.final_video_path,
"duration": storyboard.total_duration if storyboard else 0,
"file_size": file_size,
"n_frames": len(storyboard.frames) if storyboard else 0
},
"config": {
"llm_model": self.core.config.get("llm", {}).get("model", "unknown"),
"llm_base_url": self.core.config.get("llm", {}).get("base_url", "unknown"),
"source": ctx.request.get("source", "runninghub"),
}
}
# Save metadata
await self.core.persistence.save_task_metadata(task_id, metadata)
logger.info(f"💾 Saved task metadata: {task_id}")
# Save storyboard
if storyboard:
await self.core.persistence.save_storyboard(task_id, storyboard)
logger.info(f"💾 Saved storyboard: {task_id}")
except Exception as e:
logger.error(f"Failed to persist task data: {e}")
# Don't raise - persistence failure shouldn't break video generation
# Helper methods
def _get_asset_type(self, path: Path) -> str:

View File

@@ -0,0 +1,145 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta name="template:media-width" content="1024">
<meta name="template:media-height" content="1024">
<style>
html {
margin: 0;
padding: 0;
}
body {
margin: 0;
padding: 0;
width: 1080px;
height: 1920px;
font-family: 'PingFang SC', 'Source Han Sans', 'Microsoft YaHei', sans-serif;
background: #000;
overflow: hidden;
}
.page-container {
width: 1080px;
height: 1920px;
position: relative;
overflow: hidden;
}
/* 1. Background Image Layer (垫底图片) */
.background-layer {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
z-index: 0;
}
.background-layer img {
width: 100%;
height: 100%;
object-fit: contain;
display: block;
}
/* 2. Gradient Overlay (渐变遮罩)
Ensures text readability regardless of image brightness
Top: Darker for Title
Middle: Transparent for Image visibility
Bottom: Darker for Subtitles
*/
.gradient-overlay {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
z-index: 1;
background: linear-gradient(
to bottom,
rgba(0,0,0,0.6) 0%,
rgba(0,0,0,0.1) 25%,
rgba(0,0,0,0.1) 60%,
rgba(0,0,0,0.8) 100%
);
}
/* 3. Content Layer (内容层) */
.content-layer {
position: relative;
z-index: 2;
width: 100%;
height: 100%;
padding: 120px 80px 0px 80px; /* Top, Right, Bottom, Left */
box-sizing: border-box;
display: flex;
flex-direction: column;
justify-content: flex-start;
color: #ffffff;
}
/* Title Styling */
.video-title {
font-size: 80px;
font-weight: 700;
line-height: 1.2;
text-shadow: 0 4px 12px rgba(0,0,0,0.5);
margin-bottom: 40px;
text-align: center;
}
/* Hide title when empty */
.video-title:empty {
display: none;
}
/* Flex spacer to push subtitle to bottom */
.spacer {
flex-grow: 1;
}
/* Narration/Subtitle Styling */
.subtitle-wrapper {
margin-bottom: 60px;
}
.text {
font-size: 52px;
font-weight: 500;
line-height: 1.6;
text-align: center;
text-shadow: 0 2px 8px rgba(0,0,0,0.6);
backdrop-filter: blur(4px);
}
</style>
</head>
<body>
<div class="page-container">
<!-- Background Image -->
<div class="background-layer">
<img src="{{image}}" alt="Background">
</div>
<!-- Shadow Overlay for Text Readability -->
<div class="gradient-overlay"></div>
<!-- Main Content -->
<div class="content-layer">
<!-- Top Section: Title -->
<div class="video-title">
{{title}}
</div>
<!-- Spacer pushes content apart -->
<div class="spacer"></div>
<!-- Bottom Section: Narration/Text -->
<div class="subtitle-wrapper">
<div class="text">{{text}}</div>
</div>
</div>
</div>
</body>
</html>

View File

@@ -169,7 +169,7 @@ def render_content_input():
}
def render_bgm_section():
def render_bgm_section(key_prefix=""):
"""Render BGM selection section"""
with st.container(border=True):
st.markdown(f"**{tr('section.bgm')}**")
@@ -204,7 +204,8 @@ def render_bgm_section():
"BGM",
bgm_options,
index=default_index,
label_visibility="collapsed"
label_visibility="collapsed",
key=f"{key_prefix}bgm_selector"
)
# BGM volume slider (only show when BGM is selected)
@@ -216,7 +217,7 @@ def render_bgm_section():
value=0.2,
step=0.01,
format="%.2f",
key="bgm_volume_slider",
key=f"{key_prefix}bgm_volume_slider",
help=tr("bgm.volume_help")
)
else:
@@ -224,7 +225,7 @@ def render_bgm_section():
# BGM preview button (only if BGM is not "None")
if bgm_choice != tr("bgm.none"):
if st.button(tr("bgm.preview"), key="preview_bgm", use_container_width=True):
if st.button(tr("bgm.preview"), key=f"{key_prefix}preview_bgm", use_container_width=True):
from pixelle_video.utils.os_util import get_resource_path, resource_exists
try:
if resource_exists("bgm", bgm_choice):

View File

@@ -332,7 +332,44 @@
"batch.error": "Error",
"batch.error_detail": "View detailed error stack",
"pipeline.standard.name": "Standard Video",
"pipeline.demo.name": "Demo Feature",
"pipeline.demo.description": "A demo pipeline with a custom layout"
"pipeline.asset_based.name": "Asset-Based Video",
"pipeline.asset_based.description": "Generate videos from user-provided assets",
"asset_based.section.assets": "📦 Asset Upload",
"asset_based.section.video_info": "📝 Video Information",
"asset_based.section.source": "⚙️ Service Configuration",
"asset_based.assets.what": "Upload your images or video assets, AI will automatically analyze them and generate a video script",
"asset_based.assets.how": "Supports JPG/PNG/GIF/WebP images and MP4/MOV/AVI videos. Each asset should be clear and relevant",
"asset_based.assets.upload": "Upload Assets",
"asset_based.assets.upload_help": "Supports multiple image or video files",
"asset_based.assets.count": "✅ Uploaded {count} assets",
"asset_based.assets.preview": "📷 Asset Preview",
"asset_based.assets.empty_hint": "💡 Please upload at least one image or video asset",
"asset_based.video_title": "Video Title (Optional)",
"asset_based.video_title_placeholder": "e.g., Pet Store Year-End Sale",
"asset_based.video_title_help": "Main title for the video, leave empty to hide title",
"asset_based.intent": "Video Intent",
"asset_based.intent_placeholder": "e.g., Promote our pet store's year-end special offers to attract more customers, use a warm and friendly tone",
"asset_based.intent_help": "Describe the purpose, message, and desired style of this video",
"asset_based.duration": "Target Duration (seconds)",
"asset_based.duration_help": "Expected video duration, AI will adjust based on asset count",
"asset_based.duration_label": "Target Duration: {seconds}s",
"asset_based.source.what": "Select the service provider for image analysis",
"asset_based.source.how": "RunningHub is a cloud service requiring API Key; SelfHost uses local ComfyUI",
"asset_based.source.select": "Select Service",
"asset_based.source.runninghub": "☁️ RunningHub (Cloud)",
"asset_based.source.selfhost": "🖥️ SelfHost (Local)",
"asset_based.source.runninghub_hint": "💡 Using RunningHub cloud service for asset analysis",
"asset_based.source.selfhost_hint": "💡 Using local ComfyUI service for asset analysis",
"asset_based.source.runninghub_not_configured": "⚠️ RunningHub API Key not configured",
"asset_based.source.selfhost_not_configured": "⚠️ Local ComfyUI URL not configured",
"asset_based.output.no_assets": "💡 Please upload assets on the left first",
"asset_based.output.ready": "📦 {count} assets ready, you can start generating",
"asset_based.progress.analyzing": "🔍 Analyzing assets...",
"asset_based.progress.analyzing_start": "🔍 Starting to analyze {total} assets...",
"asset_based.progress.analyzing_asset": "🔍 Analyzing asset {current}/{total}: {name}",
"asset_based.progress.analyzing_complete": "✅ Asset analysis complete ({count} total)",
"asset_based.progress.generating_script": "📝 Generating video script...",
"asset_based.progress.script_complete": "✅ Script generation complete",
"asset_based.progress.concat_complete": "✅ Video concatenation complete"
}
}

View File

@@ -332,7 +332,44 @@
"batch.error": "错误信息",
"batch.error_detail": "查看详细错误堆栈",
"pipeline.standard.name": "标准视频",
"pipeline.demo.name": "演示功能",
"pipeline.demo.description": "具有自定义布局的演示 Pipeline"
"pipeline.asset_based.name": "素材视频",
"pipeline.asset_based.description": "基于用户上传的素材生成视频",
"asset_based.section.assets": "📦 素材上传",
"asset_based.section.video_info": "📝 视频信息",
"asset_based.section.source": "⚙️ 服务配置",
"asset_based.assets.what": "上传您的图片或视频素材AI 将自动分析并生成视频脚本",
"asset_based.assets.how": "支持 JPG/PNG/GIF/WebP 图片和 MP4/MOV/AVI 等视频格式,建议每个素材清晰且内容相关",
"asset_based.assets.upload": "上传素材",
"asset_based.assets.upload_help": "支持多个图片或视频文件",
"asset_based.assets.count": "✅ 已上传 {count} 个素材",
"asset_based.assets.preview": "📷 素材预览",
"asset_based.assets.empty_hint": "💡 请上传至少一个图片或视频素材",
"asset_based.video_title": "视频标题(选填)",
"asset_based.video_title_placeholder": "例如:宠物店年终大促",
"asset_based.video_title_help": "视频的主标题,留空则不显示标题",
"asset_based.intent": "视频意图",
"asset_based.intent_placeholder": "例如:宣传我们的宠物店年终特惠活动,吸引更多客户到店消费,风格要温馨亲切",
"asset_based.intent_help": "描述这个视频的目的、想传达的信息以及期望的风格",
"asset_based.duration": "目标时长(秒)",
"asset_based.duration_help": "视频的预期时长AI 会根据素材数量和时长进行调整",
"asset_based.duration_label": "目标时长:{seconds} 秒",
"asset_based.source.what": "选择用于图像分析的服务提供商",
"asset_based.source.how": "RunningHub 是云端服务,需配置 API KeySelfHost 是本地 ComfyUI 服务",
"asset_based.source.select": "选择服务",
"asset_based.source.runninghub": "☁️ RunningHub云端",
"asset_based.source.selfhost": "🖥️ SelfHost本地",
"asset_based.source.runninghub_hint": "💡 使用 RunningHub 云端服务分析素材",
"asset_based.source.selfhost_hint": "💡 使用本地 ComfyUI 服务分析素材",
"asset_based.source.runninghub_not_configured": "⚠️ 未配置 RunningHub API Key",
"asset_based.source.selfhost_not_configured": "⚠️ 未配置本地 ComfyUI 地址",
"asset_based.output.no_assets": "💡 请先在左侧上传素材",
"asset_based.output.ready": "📦 已准备好 {count} 个素材,可以开始生成",
"asset_based.progress.analyzing": "🔍 正在分析素材...",
"asset_based.progress.analyzing_start": "🔍 开始分析 {total} 个素材...",
"asset_based.progress.analyzing_asset": "🔍 分析素材 {current}/{total}{name}",
"asset_based.progress.analyzing_complete": "✅ 素材分析完成(共 {count} 个)",
"asset_based.progress.generating_script": "📝 正在生成视频脚本...",
"asset_based.progress.script_complete": "✅ 脚本生成完成",
"asset_based.progress.concat_complete": "✅ 视频合成完成"
}
}

View File

@@ -25,7 +25,7 @@ from web.pipelines.base import (
# Import all pipeline UI modules to ensure they register themselves
from web.pipelines import standard
from web.pipelines import demo
from web.pipelines import asset_based
__all__ = [
"PipelineUI",

View File

@@ -0,0 +1,447 @@
# Copyright (C) 2025 AIDC-AI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Asset-Based Pipeline UI
Implements the UI for generating videos from user-provided assets.
"""
import os
import time
from pathlib import Path
from typing import Any
import streamlit as st
from loguru import logger
from web.i18n import tr, get_language
from web.pipelines.base import PipelineUI, register_pipeline_ui
from web.components.content_input import render_bgm_section, render_version_info
from web.utils.async_helpers import run_async
from pixelle_video.config import config_manager
from pixelle_video.models.progress import ProgressEvent
class AssetBasedPipelineUI(PipelineUI):
"""
UI for the Asset-Based Video Generation Pipeline.
Generates videos from user-provided assets (images/videos).
"""
name = "asset_based"
icon = "📦"
@property
def display_name(self):
return tr("pipeline.asset_based.name")
@property
def description(self):
return tr("pipeline.asset_based.description")
def render(self, pixelle_video: Any):
# Three-column layout
left_col, middle_col, right_col = st.columns([1, 1, 1])
# ====================================================================
# Left Column: Asset Upload & Video Info
# ====================================================================
with left_col:
asset_params = self._render_asset_input()
bgm_params = render_bgm_section(key_prefix="asset_")
render_version_info()
# ====================================================================
# Middle Column: Video Configuration
# ====================================================================
with middle_col:
config_params = self._render_video_config(pixelle_video)
# ====================================================================
# Right Column: Output Preview
# ====================================================================
with right_col:
# Combine all parameters
video_params = {
"pipeline": self.name,
**asset_params,
**bgm_params,
**config_params
}
self._render_output_preview(pixelle_video, video_params)
def _render_asset_input(self) -> dict:
"""Render asset upload section"""
with st.container(border=True):
st.markdown(f"**{tr('asset_based.section.assets')}**")
with st.expander(tr("help.feature_description"), expanded=False):
st.markdown(f"**{tr('help.what')}**")
st.markdown(tr("asset_based.assets.what"))
st.markdown(f"**{tr('help.how')}**")
st.markdown(tr("asset_based.assets.how"))
# File uploader for multiple files
uploaded_files = st.file_uploader(
tr("asset_based.assets.upload"),
type=["jpg", "jpeg", "png", "gif", "webp", "mp4", "mov", "avi", "mkv", "webm"],
accept_multiple_files=True,
help=tr("asset_based.assets.upload_help"),
key="asset_files"
)
# Save uploaded files to temp directory with unique session ID
asset_paths = []
if uploaded_files:
import uuid
session_id = str(uuid.uuid4()).replace('-', '')[:12]
temp_dir = Path(f"temp/assets_{session_id}")
temp_dir.mkdir(parents=True, exist_ok=True)
for uploaded_file in uploaded_files:
file_path = temp_dir / uploaded_file.name
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
asset_paths.append(str(file_path.absolute()))
st.success(tr("asset_based.assets.count", count=len(asset_paths)))
# Preview uploaded assets
with st.expander(tr("asset_based.assets.preview"), expanded=True):
# Show in a grid (3 columns)
cols = st.columns(3)
for i, (file, path) in enumerate(zip(uploaded_files, asset_paths)):
with cols[i % 3]:
# Check if image or video
ext = Path(path).suffix.lower()
if ext in [".jpg", ".jpeg", ".png", ".gif", ".webp"]:
st.image(file, caption=file.name, use_container_width=True)
elif ext in [".mp4", ".mov", ".avi", ".mkv", ".webm"]:
st.video(file)
st.caption(file.name)
else:
st.info(tr("asset_based.assets.empty_hint"))
# Video title & intent
with st.container(border=True):
st.markdown(f"**{tr('asset_based.section.video_info')}**")
video_title = st.text_input(
tr("asset_based.video_title"),
placeholder=tr("asset_based.video_title_placeholder"),
help=tr("asset_based.video_title_help"),
key="asset_video_title"
)
intent = st.text_area(
tr("asset_based.intent"),
placeholder=tr("asset_based.intent_placeholder"),
help=tr("asset_based.intent_help"),
height=100,
key="asset_intent"
)
return {
"assets": asset_paths,
"video_title": video_title,
"intent": intent if intent else None
}
def _render_video_config(self, pixelle_video: Any) -> dict:
"""Render video configuration section"""
# Duration configuration
with st.container(border=True):
st.markdown(f"**{tr('video.title')}**")
# Duration slider
duration = st.slider(
tr("asset_based.duration"),
min_value=15,
max_value=120,
value=30,
step=5,
help=tr("asset_based.duration_help"),
key="asset_duration"
)
st.caption(tr("asset_based.duration_label", seconds=duration))
# Workflow source selection
with st.container(border=True):
st.markdown(f"**{tr('asset_based.section.source')}**")
with st.expander(tr("help.feature_description"), expanded=False):
st.markdown(f"**{tr('help.what')}**")
st.markdown(tr("asset_based.source.what"))
st.markdown(f"**{tr('help.how')}**")
st.markdown(tr("asset_based.source.how"))
source_options = {
"runninghub": tr("asset_based.source.runninghub"),
"selfhost": tr("asset_based.source.selfhost")
}
# Check if RunningHub API key is configured
comfyui_config = config_manager.get_comfyui_config()
has_runninghub = bool(comfyui_config.get("runninghub_api_key"))
has_selfhost = bool(comfyui_config.get("comfyui_url"))
# Default to available source
if has_runninghub:
default_source_index = 0
elif has_selfhost:
default_source_index = 1
else:
default_source_index = 0
source = st.radio(
tr("asset_based.source.select"),
options=list(source_options.keys()),
format_func=lambda x: source_options[x],
index=default_source_index,
horizontal=True,
key="asset_source",
label_visibility="collapsed"
)
# Show hint based on selection
if source == "runninghub":
if not has_runninghub:
st.warning(tr("asset_based.source.runninghub_not_configured"))
else:
st.info(tr("asset_based.source.runninghub_hint"))
else:
if not has_selfhost:
st.warning(tr("asset_based.source.selfhost_not_configured"))
else:
st.info(tr("asset_based.source.selfhost_hint"))
# TTS configuration
with st.container(border=True):
st.markdown(f"**{tr('section.tts')}**")
# Import voice configuration
from pixelle_video.tts_voices import EDGE_TTS_VOICES, get_voice_display_name
# Get saved voice from config
comfyui_config = config_manager.get_comfyui_config()
tts_config = comfyui_config.get("tts", {})
local_config = tts_config.get("local", {})
saved_voice = local_config.get("voice", "zh-CN-YunjianNeural")
saved_speed = local_config.get("speed", 1.2)
# Build voice options with i18n
voice_options = []
voice_ids = []
default_voice_index = 0
for idx, voice_config in enumerate(EDGE_TTS_VOICES):
voice_id = voice_config["id"]
display_name = get_voice_display_name(voice_id, tr, get_language())
voice_options.append(display_name)
voice_ids.append(voice_id)
if voice_id == saved_voice:
default_voice_index = idx
# Two-column layout
voice_col, speed_col = st.columns([1, 1])
with voice_col:
selected_voice_display = st.selectbox(
tr("tts.voice_selector"),
voice_options,
index=default_voice_index,
key="asset_tts_voice"
)
selected_voice_index = voice_options.index(selected_voice_display)
voice_id = voice_ids[selected_voice_index]
with speed_col:
tts_speed = st.slider(
tr("tts.speed"),
min_value=0.5,
max_value=2.0,
value=saved_speed,
step=0.1,
format="%.1fx",
key="asset_tts_speed"
)
st.caption(tr("tts.speed_label", speed=f"{tts_speed:.1f}"))
return {
"duration": duration,
"source": source,
"voice_id": voice_id,
"tts_speed": tts_speed
}
def _render_output_preview(self, pixelle_video: Any, video_params: dict):
"""Render output preview section"""
with st.container(border=True):
st.markdown(f"**{tr('section.video_generation')}**")
# Check configuration
if not config_manager.validate():
st.warning(tr("settings.not_configured"))
# Check if assets are provided
assets = video_params.get("assets", [])
if not assets:
st.info(tr("asset_based.output.no_assets"))
st.button(
tr("btn.generate"),
type="primary",
use_container_width=True,
disabled=True,
key="asset_generate_disabled"
)
return
# Show asset summary
st.info(tr("asset_based.output.ready", count=len(assets)))
# Generate button
if st.button(tr("btn.generate"), type="primary", use_container_width=True, key="asset_generate"):
# Validate
if not config_manager.validate():
st.error(tr("settings.not_configured"))
st.stop()
# Show progress
progress_bar = st.progress(0)
status_text = st.empty()
start_time = time.time()
try:
# Import pipeline
from pixelle_video.pipelines.asset_based import AssetBasedPipeline
# Create pipeline
pipeline = AssetBasedPipeline(pixelle_video)
# Progress callback
def update_progress(event: ProgressEvent):
if event.event_type == "analyzing_assets":
if event.extra_info == "start":
message = tr("asset_based.progress.analyzing_start", total=event.frame_total)
else:
message = tr("asset_based.progress.analyzing_complete", count=event.frame_total)
elif event.event_type == "analyzing_asset":
message = tr(
"asset_based.progress.analyzing_asset",
current=event.frame_current,
total=event.frame_total,
name=event.extra_info or ""
)
elif event.event_type == "generating_script":
if event.extra_info == "complete":
message = tr("asset_based.progress.script_complete")
else:
message = tr("asset_based.progress.generating_script")
elif event.event_type == "frame_step":
action_key = f"progress.step_{event.action}"
action_text = tr(action_key)
message = tr(
"progress.frame_step",
current=event.frame_current,
total=event.frame_total,
step=event.step,
action=action_text
)
elif event.event_type == "processing_frame":
message = tr(
"progress.frame",
current=event.frame_current,
total=event.frame_total
)
elif event.event_type == "concatenating":
if event.extra_info == "complete":
message = tr("asset_based.progress.concat_complete")
else:
message = tr("progress.concatenating")
elif event.event_type == "completed":
message = tr("progress.completed")
else:
message = tr(f"progress.{event.event_type}")
status_text.text(message)
progress_bar.progress(min(int(event.progress * 100), 99))
# Execute pipeline with progress callback
ctx = run_async(pipeline(
assets=video_params["assets"],
video_title=video_params.get("video_title", ""),
intent=video_params.get("intent"),
duration=video_params.get("duration", 30),
source=video_params.get("source", "runninghub"),
bgm_path=video_params.get("bgm_path"),
bgm_volume=video_params.get("bgm_volume", 0.2),
bgm_mode=video_params.get("bgm_mode", "loop"),
voice_id=video_params.get("voice_id", "zh-CN-YunjianNeural"),
tts_speed=video_params.get("tts_speed", 1.2),
progress_callback=update_progress
))
total_time = time.time() - start_time
progress_bar.progress(100)
status_text.text(tr("status.success"))
# Display result
st.success(tr("status.video_generated", path=ctx.final_video_path))
st.markdown("---")
# Video info
if os.path.exists(ctx.final_video_path):
file_size_mb = os.path.getsize(ctx.final_video_path) / (1024 * 1024)
n_scenes = len(ctx.storyboard.frames) if ctx.storyboard else 0
info_text = (
f"⏱️ {tr('info.generation_time')} {total_time:.1f}s "
f"📦 {file_size_mb:.2f}MB "
f"🎬 {n_scenes}{tr('info.scenes_unit')}"
)
st.caption(info_text)
st.markdown("---")
# Video preview
st.video(ctx.final_video_path)
# Download button
with open(ctx.final_video_path, "rb") as video_file:
video_bytes = video_file.read()
video_filename = os.path.basename(ctx.final_video_path)
st.download_button(
label="⬇️ 下载视频" if get_language() == "zh_CN" else "⬇️ Download Video",
data=video_bytes,
file_name=video_filename,
mime="video/mp4",
use_container_width=True
)
else:
st.error(tr("status.video_not_found", path=ctx.final_video_path))
except Exception as e:
status_text.text("")
progress_bar.empty()
st.error(tr("status.error", error=str(e)))
logger.exception(e)
st.stop()
# Register self
register_pipeline_ui(AssetBasedPipelineUI)

View File

@@ -1,69 +0,0 @@
# Copyright (C) 2025 AIDC-AI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Demo Pipeline UI
Implements a custom layout for the Demo Pipeline.
"""
import streamlit as st
from typing import Any
from web.i18n import tr
from web.pipelines.base import PipelineUI, register_pipeline_ui
class DemoPipelineUI(PipelineUI):
"""
Demo UI to verify the full-page plugin system.
Uses a completely different layout (2 columns).
"""
name = "demo"
icon = ""
@property
def display_name(self):
return tr("pipeline.demo.name")
@property
def description(self):
return tr("pipeline.demo.description")
def render(self, pixelle_video: Any):
st.markdown("### ✨ Demo Pipeline Custom Layout")
st.info("This pipeline uses a custom 2-column layout, demonstrating full UI control.")
col1, col2 = st.columns([2, 1])
with col1:
with st.container(border=True):
st.subheader("1. Input")
topic = st.text_input("Enter Topic", placeholder="e.g. AI News")
mood = st.selectbox("Mood", ["Happy", "Serious", "Funny"])
st.markdown("---")
st.subheader("2. Settings")
# Simplified settings for demo
n_scenes = st.slider("Scenes", 3, 10, 5)
with col2:
with st.container(border=True):
st.subheader("3. Generate")
if st.button("🚀 Generate Demo Video", type="primary", use_container_width=True):
# Mock generation logic or call backend
st.success(f"Generating video for '{topic}' ({mood}) with {n_scenes} scenes...")
st.balloons()
# Register self
register_pipeline_ui(DemoPipelineUI)